LocalAI/extra/grpc/vllm/backend_vllm.py

100 lines
3.5 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os, glob
from pathlib import Path
from vllm import LLM, SamplingParams
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def generate(self,prompt, max_new_tokens):
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt)
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
decoded_text = ''
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
if token.item() == self.generator.tokenizer.eos_token_id:
break
return decoded_text
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
# https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py
self.llm = LLM(model=request.Model)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
sampling_params = SamplingParams(temperature=request.Temperature, top_p=request.TopP)
outputs = self.llm.generate([request.Prompt], sampling_params)
generated_text = outputs[0].outputs[0].text
# Remove prompt from response if present
if request.Prompt in generated_text:
generated_text = generated_text.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(generated_text, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)