2024-01-19 22:42:50 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
from concurrent import futures
|
|
|
|
import time
|
|
|
|
import argparse
|
|
|
|
import signal
|
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
|
|
|
|
import backend_pb2
|
|
|
|
import backend_pb2_grpc
|
|
|
|
|
|
|
|
import grpc
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
|
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
MAMBA_CHAT= os.environ.get('MAMBA_CHAT', '1') == '1'
|
|
|
|
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
|
|
"""
|
|
|
|
A gRPC servicer that implements the Backend service defined in backend.proto.
|
|
|
|
"""
|
|
|
|
def generate(self,prompt, max_new_tokens):
|
|
|
|
"""
|
|
|
|
Generates text based on the given prompt and maximum number of new tokens.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): The prompt to generate text from.
|
|
|
|
max_new_tokens (int): The maximum number of new tokens to generate.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The generated text.
|
|
|
|
"""
|
|
|
|
self.generator.end_beam_search()
|
|
|
|
|
|
|
|
# Tokenizing the input
|
|
|
|
ids = self.generator.tokenizer.encode(prompt)
|
|
|
|
|
|
|
|
self.generator.gen_begin_reuse(ids)
|
|
|
|
initial_len = self.generator.sequence[0].shape[0]
|
|
|
|
has_leading_space = False
|
|
|
|
decoded_text = ''
|
|
|
|
for i in range(max_new_tokens):
|
|
|
|
token = self.generator.gen_single_token()
|
|
|
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
|
|
|
has_leading_space = True
|
|
|
|
|
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
|
|
|
if has_leading_space:
|
|
|
|
decoded_text = ' ' + decoded_text
|
|
|
|
|
|
|
|
if token.item() == self.generator.tokenizer.eos_token_id:
|
|
|
|
break
|
|
|
|
return decoded_text
|
|
|
|
|
|
|
|
def Health(self, request, context):
|
|
|
|
"""
|
|
|
|
Returns a health check message.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request: The health check request.
|
|
|
|
context: The gRPC context.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
backend_pb2.Reply: The health check reply.
|
|
|
|
"""
|
|
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
|
|
|
|
def LoadModel(self, request, context):
|
|
|
|
"""
|
|
|
|
Loads a language model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request: The load model request.
|
|
|
|
context: The gRPC context.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
backend_pb2.Result: The load model result.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
tokenizerModel = request.Tokenizer
|
|
|
|
if tokenizerModel == "":
|
|
|
|
tokenizerModel = request.Model
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizerModel)
|
|
|
|
if MAMBA_CHAT:
|
|
|
|
tokenizer.eos_token = "<|endoftext|>"
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
self.model = MambaLMHeadModel.from_pretrained(request.Model, device="cuda", dtype=torch.float16)
|
|
|
|
except Exception as err:
|
|
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
|
|
|
|
def Predict(self, request, context):
|
|
|
|
"""
|
|
|
|
Generates text based on the given prompt and sampling parameters.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request: The predict request.
|
|
|
|
context: The gRPC context.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
backend_pb2.Result: The predict result.
|
|
|
|
"""
|
|
|
|
if request.TopP == 0:
|
|
|
|
request.TopP = 0.9
|
|
|
|
|
|
|
|
max_tokens = request.Tokens
|
|
|
|
|
|
|
|
if request.Tokens == 0:
|
|
|
|
max_tokens = 2000
|
|
|
|
|
2024-01-20 16:56:08 +00:00
|
|
|
# encoded_input = self.tokenizer(request.Prompt)
|
|
|
|
tokens = self.tokenizer(request.Prompt, return_tensors="pt")
|
|
|
|
input_ids = tokens.input_ids.to(device="cuda")
|
|
|
|
out = self.model.generate(input_ids=input_ids, max_length=max_tokens, temperature=request.Temperature,
|
2024-01-19 22:42:50 +00:00
|
|
|
top_p=request.TopP, eos_token_id=self.tokenizer.eos_token_id)
|
|
|
|
|
|
|
|
decoded = self.tokenizer.batch_decode(out)
|
|
|
|
|
|
|
|
generated_text = decoded[0]
|
|
|
|
|
|
|
|
# Remove prompt from response if present
|
|
|
|
if request.Prompt in generated_text:
|
|
|
|
generated_text = generated_text.replace(request.Prompt, "")
|
|
|
|
|
2024-01-20 16:56:08 +00:00
|
|
|
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
2024-01-19 22:42:50 +00:00
|
|
|
|
|
|
|
def PredictStream(self, request, context):
|
|
|
|
"""
|
|
|
|
Generates text based on the given prompt and sampling parameters, and streams the results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request: The predict stream request.
|
|
|
|
context: The gRPC context.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
backend_pb2.Result: The predict stream result.
|
|
|
|
"""
|
2024-01-20 16:56:08 +00:00
|
|
|
yield self.Predict(request, context)
|
2024-01-19 22:42:50 +00:00
|
|
|
|
|
|
|
def serve(address):
|
|
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
|
|
server.add_insecure_port(address)
|
|
|
|
server.start()
|
|
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
|
|
|
|
# Define the signal handler function
|
|
|
|
def signal_handler(sig, frame):
|
|
|
|
print("Received termination signal. Shutting down...")
|
|
|
|
server.stop(0)
|
|
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
|
|
|
|
try:
|
|
|
|
while True:
|
|
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
server.stop(0)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
serve(args.addr)
|