2023-05-04 06:41:13 +00:00
import os
2023-05-05 22:21:06 +00:00
import logging
2023-05-04 06:41:13 +00:00
from langchain . chat_models import ChatOpenAI
from langchain import PromptTemplate , LLMChain
from langchain . prompts . chat import (
ChatPromptTemplate ,
SystemMessagePromptTemplate ,
AIMessagePromptTemplate ,
HumanMessagePromptTemplate ,
)
from langchain . schema import (
AIMessage ,
HumanMessage ,
SystemMessage
)
2023-05-05 22:21:06 +00:00
# This logging incantation makes it easy to see that you're actually reaching your LocalAI instance rather than OpenAI.
logging . basicConfig ( level = logging . DEBUG )
2023-05-04 06:41:13 +00:00
print ( ' Langchain + LocalAI PYTHON Tests ' )
base_path = os . environ . get ( ' OPENAI_API_BASE ' , ' http://api:8080/v1 ' )
key = os . environ . get ( ' OPENAI_API_KEY ' , ' - ' )
model_name = os . environ . get ( ' MODEL_NAME ' , ' gpt-3.5-turbo ' )
chat = ChatOpenAI ( temperature = 0 , openai_api_base = base_path , openai_api_key = key , model_name = model_name , max_tokens = 100 )
print ( " Created ChatOpenAI for " , chat . model_name )
2023-05-05 22:21:06 +00:00
template = " You are a helpful assistant that translates {input_language} to {output_language} . The next message will be a sentence in {input_language} . Respond ONLY with the translation in {output_language} . Do not respond in {input_language} ! "
2023-05-04 06:41:13 +00:00
system_message_prompt = SystemMessagePromptTemplate . from_template ( template )
human_template = " {text} "
human_message_prompt = HumanMessagePromptTemplate . from_template ( human_template )
chat_prompt = ChatPromptTemplate . from_messages ( [ system_message_prompt , human_message_prompt ] )
print ( " ABOUT to execute " )
# get a chat completion from the formatted messages
2023-05-05 22:21:06 +00:00
response = chat ( chat_prompt . format_prompt ( input_language = " English " , output_language = " French " , text = " I love programming. " ) . to_messages ( ) )
print ( response )
2023-05-04 06:41:13 +00:00
print ( " . " ) ;