LocalAI/examples/query_data/query.py

36 lines
1.3 KiB
Python
Raw Normal View History

2023-05-05 19:56:31 +00:00
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import LLMPredictor, PromptHelper, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
2023-05-06 17:15:22 +00:00
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
2023-05-05 19:56:31 +00:00
# This example uses text-davinci-003 by default; feel free to change if desired
2023-05-06 22:58:30 +00:00
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path))
2023-05-05 19:56:31 +00:00
# Configure prompt parameters and initialise helper
2023-05-10 13:20:21 +00:00
max_input_size = 500
2023-05-05 19:56:31 +00:00
num_output = 256
max_chunk_overlap = 0.2
2023-05-05 19:56:31 +00:00
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./storage')
# load index
index = load_index_from_storage(storage_context, service_context=service_context, )
query_engine = index.as_query_engine()
data = input("Question: ")
response = query_engine.query(data)
print(response)