2023-04-27 04:18:18 +00:00
package api
import (
"fmt"
2023-04-29 07:22:09 +00:00
"regexp"
"strings"
2023-04-27 04:18:18 +00:00
"sync"
model "github.com/go-skynet/LocalAI/pkg/model"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
)
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
var mutexMap sync . Mutex
var mutexes map [ string ] * sync . Mutex = make ( map [ string ] * sync . Mutex )
func ModelInference ( s string , loader * model . ModelLoader , c Config ) ( func ( ) ( string , error ) , error ) {
var model * llama . LLama
var gptModel * gptj . GPTJ
var gpt2Model * gpt2 . GPT2
var stableLMModel * gpt2 . StableLM
modelFile := c . Model
// Try to load the model
var llamaerr , gpt2err , gptjerr , stableerr error
llamaOpts := [ ] llama . ModelOption { }
if c . ContextSize != 0 {
llamaOpts = append ( llamaOpts , llama . SetContext ( c . ContextSize ) )
}
if c . F16 {
llamaOpts = append ( llamaOpts , llama . EnableF16Memory )
}
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
model , llamaerr = loader . LoadLLaMAModel ( modelFile , llamaOpts ... )
if llamaerr != nil {
2023-05-01 18:00:15 +00:00
gptModel , gptjerr = loader . LoadGPTJModel ( modelFile , gptj . SetThreads ( c . Threads ) )
2023-04-27 04:18:18 +00:00
if gptjerr != nil {
gpt2Model , gpt2err = loader . LoadGPT2Model ( modelFile )
if gpt2err != nil {
stableLMModel , stableerr = loader . LoadStableLMModel ( modelFile )
if stableerr != nil {
return nil , fmt . Errorf ( "llama: %s gpt: %s gpt2: %s stableLM: %s" , llamaerr . Error ( ) , gptjerr . Error ( ) , gpt2err . Error ( ) , stableerr . Error ( ) ) // llama failed first, so we want to catch both errors
}
}
}
}
var fn func ( ) ( string , error )
switch {
case stableLMModel != nil :
fn = func ( ) ( string , error ) {
// Generate the prediction using the language model
predictOptions := [ ] gpt2 . PredictOption {
gpt2 . SetTemperature ( c . Temperature ) ,
gpt2 . SetTopP ( c . TopP ) ,
gpt2 . SetTopK ( c . TopK ) ,
gpt2 . SetTokens ( c . Maxtokens ) ,
gpt2 . SetThreads ( c . Threads ) ,
}
if c . Batch != 0 {
predictOptions = append ( predictOptions , gpt2 . SetBatch ( c . Batch ) )
}
if c . Seed != 0 {
predictOptions = append ( predictOptions , gpt2 . SetSeed ( c . Seed ) )
}
return stableLMModel . Predict (
s ,
predictOptions ... ,
)
}
case gpt2Model != nil :
fn = func ( ) ( string , error ) {
// Generate the prediction using the language model
predictOptions := [ ] gpt2 . PredictOption {
gpt2 . SetTemperature ( c . Temperature ) ,
gpt2 . SetTopP ( c . TopP ) ,
gpt2 . SetTopK ( c . TopK ) ,
gpt2 . SetTokens ( c . Maxtokens ) ,
gpt2 . SetThreads ( c . Threads ) ,
}
if c . Batch != 0 {
predictOptions = append ( predictOptions , gpt2 . SetBatch ( c . Batch ) )
}
if c . Seed != 0 {
predictOptions = append ( predictOptions , gpt2 . SetSeed ( c . Seed ) )
}
return gpt2Model . Predict (
s ,
predictOptions ... ,
)
}
case gptModel != nil :
fn = func ( ) ( string , error ) {
// Generate the prediction using the language model
predictOptions := [ ] gptj . PredictOption {
gptj . SetTemperature ( c . Temperature ) ,
gptj . SetTopP ( c . TopP ) ,
gptj . SetTopK ( c . TopK ) ,
gptj . SetTokens ( c . Maxtokens ) ,
}
if c . Batch != 0 {
predictOptions = append ( predictOptions , gptj . SetBatch ( c . Batch ) )
}
return gptModel . Predict (
s ,
predictOptions ... ,
)
}
case model != nil :
fn = func ( ) ( string , error ) {
// Generate the prediction using the language model
predictOptions := [ ] llama . PredictOption {
llama . SetTemperature ( c . Temperature ) ,
llama . SetTopP ( c . TopP ) ,
llama . SetTopK ( c . TopK ) ,
llama . SetTokens ( c . Maxtokens ) ,
llama . SetThreads ( c . Threads ) ,
}
if c . Debug {
predictOptions = append ( predictOptions , llama . Debug )
}
predictOptions = append ( predictOptions , llama . SetStopWords ( c . StopWords ... ) )
if c . RepeatPenalty != 0 {
predictOptions = append ( predictOptions , llama . SetPenalty ( c . RepeatPenalty ) )
}
if c . Keep != 0 {
predictOptions = append ( predictOptions , llama . SetNKeep ( c . Keep ) )
}
if c . Batch != 0 {
predictOptions = append ( predictOptions , llama . SetBatch ( c . Batch ) )
}
if c . F16 {
predictOptions = append ( predictOptions , llama . EnableF16KV )
}
if c . IgnoreEOS {
predictOptions = append ( predictOptions , llama . IgnoreEOS )
}
if c . Seed != 0 {
predictOptions = append ( predictOptions , llama . SetSeed ( c . Seed ) )
}
return model . Predict (
s ,
predictOptions ... ,
)
}
}
return func ( ) ( string , error ) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap . Lock ( )
l , ok := mutexes [ modelFile ]
if ! ok {
m := & sync . Mutex { }
mutexes [ modelFile ] = m
l = m
}
mutexMap . Unlock ( )
l . Lock ( )
defer l . Unlock ( )
return fn ( )
} , nil
}
2023-04-29 07:22:09 +00:00
func ComputeChoices ( predInput string , input * OpenAIRequest , config * Config , loader * model . ModelLoader , cb func ( string , * [ ] Choice ) ) ( [ ] Choice , error ) {
result := [ ] Choice { }
n := input . N
if input . N == 0 {
n = 1
}
// get the model function to call for the result
predFunc , err := ModelInference ( predInput , loader , * config )
if err != nil {
return result , err
}
for i := 0 ; i < n ; i ++ {
prediction , err := predFunc ( )
if err != nil {
return result , err
}
prediction = Finetune ( * config , predInput , prediction )
cb ( prediction , & result )
//result = append(result, Choice{Text: prediction})
}
return result , err
}
var cutstrings map [ string ] * regexp . Regexp = make ( map [ string ] * regexp . Regexp )
var mu sync . Mutex = sync . Mutex { }
func Finetune ( config Config , input , prediction string ) string {
if config . Echo {
prediction = input + prediction
}
for _ , c := range config . Cutstrings {
mu . Lock ( )
reg , ok := cutstrings [ c ]
if ! ok {
cutstrings [ c ] = regexp . MustCompile ( c )
reg = cutstrings [ c ]
}
mu . Unlock ( )
prediction = reg . ReplaceAllString ( prediction , "" )
}
for _ , c := range config . TrimSpace {
prediction = strings . TrimSpace ( strings . TrimPrefix ( prediction , c ) )
}
return prediction
}