mirror of
https://github.com/mudler/LocalAI.git
synced 2024-06-07 19:40:48 +00:00
94 lines
3.1 KiB
Python
94 lines
3.1 KiB
Python
|
#!/usr/bin/env python3
|
||
|
import grpc
|
||
|
from concurrent import futures
|
||
|
import time
|
||
|
import backend_pb2
|
||
|
import backend_pb2_grpc
|
||
|
import argparse
|
||
|
import signal
|
||
|
import sys
|
||
|
import os
|
||
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
||
|
from pathlib import Path
|
||
|
from transformers import AutoTokenizer
|
||
|
from transformers import TextGenerationPipeline
|
||
|
|
||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||
|
|
||
|
# Implement the BackendServicer class with the service methods
|
||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||
|
def Health(self, request, context):
|
||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||
|
def LoadModel(self, request, context):
|
||
|
try:
|
||
|
device = "cuda:0"
|
||
|
if request.Device != "":
|
||
|
device = request.Device
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=True)
|
||
|
|
||
|
model = AutoGPTQForCausalLM.from_quantized(request.Model,
|
||
|
model_basename=request.ModelBaseName,
|
||
|
use_safetensors=True,
|
||
|
trust_remote_code=True,
|
||
|
device=device,
|
||
|
use_triton=request.UseTriton,
|
||
|
quantize_config=None)
|
||
|
|
||
|
self.model = model
|
||
|
self.tokenizer = tokenizer
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||
|
|
||
|
def Predict(self, request, context):
|
||
|
# Implement Predict RPC
|
||
|
pipeline = TextGenerationPipeline(
|
||
|
model=self.model,
|
||
|
tokenizer=self.tokenizer,
|
||
|
max_new_tokens=request.Tokens,
|
||
|
temperature=request.Temperature,
|
||
|
top_p=request.TopP,
|
||
|
repetition_penalty=request.Penalty,
|
||
|
)
|
||
|
return backend_pb2.Result(message=bytes(pipeline(request.Prompt)[0]["generated_text"]))
|
||
|
|
||
|
def PredictStream(self, request, context):
|
||
|
# Implement PredictStream RPC
|
||
|
#for reply in some_data_generator():
|
||
|
# yield reply
|
||
|
# Not implemented yet
|
||
|
return self.Predict(request, context)
|
||
|
|
||
|
|
||
|
def serve(address):
|
||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
|
||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||
|
server.add_insecure_port(address)
|
||
|
server.start()
|
||
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
||
|
|
||
|
# Define the signal handler function
|
||
|
def signal_handler(sig, frame):
|
||
|
print("Received termination signal. Shutting down...")
|
||
|
server.stop(0)
|
||
|
sys.exit(0)
|
||
|
|
||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||
|
signal.signal(signal.SIGINT, signal_handler)
|
||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||
|
|
||
|
try:
|
||
|
while True:
|
||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||
|
except KeyboardInterrupt:
|
||
|
server.stop(0)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||
|
parser.add_argument(
|
||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
serve(args.addr)
|