LocalAI/pkg/functions/parse.go

109 lines
3.3 KiB
Go
Raw Normal View History

package functions
import (
"encoding/json"
"regexp"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
type FunctionsConfig struct {
DisableNoAction bool `yaml:"disable_no_action"`
NoActionFunctionName string `yaml:"no_action_function_name"`
NoActionDescriptionName string `yaml:"no_action_description_name"`
ParallelCalls bool `yaml:"parallel_calls"`
NoGrammar bool `yaml:"no_grammar"`
ResponseRegex string `yaml:"response_regex"`
}
type FuncCallResults struct {
Name string
Arguments string
}
func ParseFunctionCall(llmresult string, functionConfig FunctionsConfig) []FuncCallResults {
multipleResults := functionConfig.ParallelCalls
useGrammars := !functionConfig.NoGrammar
results := []FuncCallResults{}
// if no grammar is used, we have to extract function and arguments from the result
if !useGrammars {
// the response is a string that we have to parse
// We use named regexes here to extract the function name and arguments
// obviously, this expects the LLM to be stable and return correctly formatted JSON
// TODO: optimize this and pre-compile it
var respRegex = regexp.MustCompile(functionConfig.ResponseRegex)
match := respRegex.FindStringSubmatch(llmresult)
result := make(map[string]string)
for i, name := range respRegex.SubexpNames() {
if i != 0 && name != "" && len(match) > i {
result[name] = match[i]
}
}
// TODO: open point about multiple results and/or mixed with chat messages
// This is not handled as for now, we only expect one function call per response
functionName := result["function"]
if functionName == "" {
return results
}
return append(results, FuncCallResults{Name: result["function"], Arguments: result["arguments"]})
}
// with grammars
// TODO: use generics to avoid this code duplication
if multipleResults {
ss := []map[string]interface{}{}
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
for _, s := range ss {
func_name, ok := s["function"]
if !ok {
continue
}
args, ok := s["arguments"]
if !ok {
continue
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
continue
}
results = append(results, FuncCallResults{Name: funcName, Arguments: string(d)})
}
} else {
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name, ok := ss["function"]
if !ok {
return results
}
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
if !ok {
return results
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
return results
}
results = append(results, FuncCallResults{Name: funcName, Arguments: string(d)})
}
return results
}