LocalAI/examples/chainlit/main.py

83 lines
2.8 KiB
Python
Raw Normal View History

2023-11-02 21:56:46 +00:00
import os
import weaviate
from llama_index.storage.storage_context import StorageContext
from llama_index.vector_stores import WeaviateVectorStore
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
from llama_index.callbacks.base import CallbackManager
from llama_index import (
LLMPredictor,
ServiceContext,
StorageContext,
VectorStoreIndex,
)
import chainlit as cl
from llama_index.llms import LocalAI
from llama_index.embeddings import HuggingFaceEmbedding
import yaml
# Load the configuration file
with open("config.yaml", "r") as ymlfile:
cfg = yaml.safe_load(ymlfile)
# Get the values from the configuration file or set the default values
temperature = cfg['localAI'].get('temperature', 0)
model_name = cfg['localAI'].get('modelName', "gpt-3.5-turbo")
api_base = cfg['localAI'].get('apiBase', "http://local-ai.default")
api_key = cfg['localAI'].get('apiKey', "stub")
streaming = cfg['localAI'].get('streaming', True)
weaviate_url = cfg['weviate'].get('url', "http://weviate.default")
index_name = cfg['weviate'].get('index', "AIChroma")
query_mode = cfg['query'].get('mode', "hybrid")
topK = cfg['query'].get('topK', 1)
alpha = cfg['query'].get('alpha', 0.0)
embed_model_name = cfg['embedding'].get('model', "BAAI/bge-small-en-v1.5")
chunk_size = cfg['query'].get('chunkSize', 1024)
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
llm = LocalAI(temperature=temperature, model_name=model_name, api_base=api_base, api_key=api_key, streaming=streaming)
llm.globally_use_chat_completions = True;
client = weaviate.Client(weaviate_url)
vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
@cl.on_chat_start
async def factory():
llm_predictor = LLMPredictor(
llm=llm
)
service_context = ServiceContext.from_defaults(embed_model=embed_model, callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]), llm_predictor=llm_predictor, chunk_size=chunk_size)
index = VectorStoreIndex.from_vector_store(
vector_store,
storage_context=storage_context,
service_context=service_context
)
query_engine = index.as_query_engine(vector_store_query_mode=query_mode, similarity_top_k=topK, alpha=alpha, streaming=True)
cl.user_session.set("query_engine", query_engine)
@cl.on_message
async def main(message: cl.Message):
query_engine = cl.user_session.get("query_engine")
response = await cl.make_async(query_engine.query)(message.content)
response_message = cl.Message(content="")
for token in response.response_gen:
await response_message.stream_token(token=token)
if response.response_txt:
response_message.content = response.response_txt
await response_message.send()