LocalAI/examples/langchain-chroma/query.py

32 lines
1.1 KiB
Python
Raw Normal View History

import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings()
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
query = "What the president said about taxes ?"
print(qa.run(query))