LocalAI/examples/langchain-huggingface/README.md

68 lines
1.6 KiB
Markdown
Raw Normal View History

# Data query example
Example of integration with HuggingFace Inference API with help of [langchaingo](https://github.com/tmc/langchaingo).
## Setup
Download the LocalAI and start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/langchain-huggingface
docker-compose up -d
```
Node: Ensure you've set `HUGGINGFACEHUB_API_TOKEN` environment variable, you can generate it
on [Settings / Access Tokens](https://huggingface.co/settings/tokens) page of HuggingFace site.
This is an example `.env` file for LocalAI:
```ini
MODELS_PATH=/models
CONTEXT_SIZE=512
HUGGINGFACEHUB_API_TOKEN=hg_123456
```
## Using remote models
Now you can use any remote models available via HuggingFace API, for example let's enable using of
[gpt2](https://huggingface.co/gpt2) model in `gpt-3.5-turbo.yaml` config:
```yml
name: gpt-3.5-turbo
parameters:
model: gpt2
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
backend: "langchain-huggingface"
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all
```
Here is you can see in field `parameters.model` equal `gpt2` and `backend` equal `langchain-huggingface`.
## How to use
```shell
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"gpt-3.5-turbo","object":"model"}]}
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```