mirror of
https://github.com/mudler/LocalAI.git
synced 2024-06-07 19:40:48 +00:00
feat: llama.cpp gRPC C++ backend (#1170)
* wip: llama.cpp c++ gRPC server Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * make it work, attach it to the build process Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * update deps Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * fix: add protobuf dep Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * try fix protobuf on cmake * cmake: workarounds Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * add packages * cmake: use fixed version of grpc Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * cmake(grpc): install locally * install grpc Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * install required deps for grpc on debian bullseye Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * debug * debug * Fixups * no need to install cmake manually Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * ci: fixup macOS * use brew whenever possible Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * macOS fixups * debug * fix container build Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * workaround * try mac https://stackoverflow.com/questions/23905661/on-mac-g-clang-fails-to-search-usr-local-include-and-usr-local-lib-by-def * Disable temp. arm64 docker image builds --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
8034ed3473
commit
128694213f
3
.github/workflows/bump_deps.yaml
vendored
3
.github/workflows/bump_deps.yaml
vendored
@ -12,6 +12,9 @@ jobs:
|
||||
- repository: "go-skynet/go-llama.cpp"
|
||||
variable: "GOLLAMA_VERSION"
|
||||
branch: "master"
|
||||
- repository: "ggerganov/llama.cpp"
|
||||
variable: "CPPLLAMA_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/go-ggml-transformers.cpp"
|
||||
variable: "GOGGMLTRANSFORMERS_VERSION"
|
||||
branch: "master"
|
||||
|
5
.github/workflows/image.yml
vendored
5
.github/workflows/image.yml
vendored
@ -19,7 +19,8 @@ jobs:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64,linux/arm64'
|
||||
#platforms: 'linux/amd64,linux/arm64'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: ''
|
||||
ffmpeg: ''
|
||||
@ -38,7 +39,7 @@ jobs:
|
||||
tag-suffix: '-cublas-cuda12'
|
||||
ffmpeg: ''
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64,linux/arm64'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
|
14
.github/workflows/release.yaml
vendored
14
.github/workflows/release.yaml
vendored
@ -29,6 +29,12 @@ jobs:
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && sudo make -j12 install
|
||||
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
@ -66,12 +72,20 @@ jobs:
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '>=1.21.0'
|
||||
- name: Dependencies
|
||||
run: |
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && make -j12 install && rm -rf grpc
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
|
20
.github/workflows/test.yml
vendored
20
.github/workflows/test.yml
vendored
@ -67,11 +67,15 @@ jobs:
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
|
||||
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
sudo pip install -r extra/requirements.txt
|
||||
|
||||
|
||||
# Pre-build stable diffusion before we install a newever version of abseil (not compatible with stablediffusion-ncn)
|
||||
GO_TAGS="tts stablediffusion" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
|
||||
sudo mkdir /build && sudo chmod -R 777 /build && cd /build && \
|
||||
curl -L "https://github.com/gabime/spdlog/archive/refs/tags/v1.11.0.tar.gz" | \
|
||||
tar -xzvf - && \
|
||||
@ -87,6 +91,12 @@ jobs:
|
||||
sudo cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/lib/. /usr/lib/ && \
|
||||
sudo ln -s /usr/lib/libpiper_phonemize.so /usr/lib/libpiper_phonemize.so.1 && \
|
||||
sudo cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/include/. /usr/include/
|
||||
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && sudo make -j12 install
|
||||
|
||||
- name: Test
|
||||
run: |
|
||||
ESPEAK_DATA="/build/lib/Linux-$(uname -m)/piper_phonemize/lib/espeak-ng-data" GO_TAGS="tts stablediffusion" make test
|
||||
@ -108,6 +118,14 @@ jobs:
|
||||
# You can test your matrix by printing the current Go version
|
||||
- name: Display Go version
|
||||
run: go version
|
||||
- name: Dependencies
|
||||
run: |
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && make -j12 install && rm -rf grpc
|
||||
- name: Test
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
|
17
Dockerfile
17
Dockerfile
@ -16,7 +16,8 @@ ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/i
|
||||
ARG GO_TAGS="stablediffusion tts"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates cmake curl patch pip
|
||||
apt-get install -y ca-certificates curl patch pip cmake
|
||||
|
||||
|
||||
# Use the variables in subsequent instructions
|
||||
RUN echo "Target Architecture: $TARGETARCH"
|
||||
@ -104,6 +105,15 @@ RUN make prepare
|
||||
COPY . .
|
||||
COPY .git .
|
||||
|
||||
# stablediffusion does not tolerate a newer version of abseil, build it first
|
||||
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
|
||||
RUN git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && make -j12 install && rm -rf grpc
|
||||
|
||||
# Rebuild with defaults backends
|
||||
RUN ESPEAK_DATA=/build/lib/Linux-$(uname -m)/piper_phonemize/lib/espeak-ng-data make build
|
||||
|
||||
###################################
|
||||
@ -132,8 +142,13 @@ WORKDIR /build
|
||||
# https://github.com/go-skynet/LocalAI/pull/434
|
||||
COPY . .
|
||||
RUN make prepare-sources
|
||||
|
||||
# Copy the binary
|
||||
COPY --from=builder /build/local-ai ./
|
||||
|
||||
# do not let piper rebuild (requires an older version of absl)
|
||||
COPY --from=builder /build/backend-assets/grpc/piper ./backend-assets/grpc/piper
|
||||
|
||||
# Copy VALLE-X as it's not a real "lib"
|
||||
RUN cp -rfv /usr/lib/vall-e-x/* ./
|
||||
|
||||
|
26
Makefile
26
Makefile
@ -8,6 +8,8 @@ GOLLAMA_VERSION?=1676dcd7a139b6cdfbaea5fd67f46dc25d9d8bcf
|
||||
|
||||
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
|
||||
|
||||
CPPLLAMA_VERSION?=24ba3d829e31a6eda3fa1723f692608c2fa3adda
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
GPT4ALL_VERSION?=27a8b020c36b0df8f8b82a252d261cda47cf44b8
|
||||
@ -120,7 +122,7 @@ ifeq ($(findstring tts,$(GO_TAGS)),tts)
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/piper
|
||||
endif
|
||||
|
||||
GRPC_BACKENDS?=backend-assets/grpc/langchain-huggingface backend-assets/grpc/falcon-ggml backend-assets/grpc/bert-embeddings backend-assets/grpc/falcon backend-assets/grpc/bloomz backend-assets/grpc/llama backend-assets/grpc/llama-stable backend-assets/grpc/gpt4all backend-assets/grpc/dolly backend-assets/grpc/gpt2 backend-assets/grpc/gptj backend-assets/grpc/gptneox backend-assets/grpc/mpt backend-assets/grpc/replit backend-assets/grpc/starcoder backend-assets/grpc/rwkv backend-assets/grpc/whisper $(OPTIONAL_GRPC)
|
||||
GRPC_BACKENDS?=backend-assets/grpc/langchain-huggingface backend-assets/grpc/falcon-ggml backend-assets/grpc/bert-embeddings backend-assets/grpc/falcon backend-assets/grpc/bloomz backend-assets/grpc/llama backend-assets/grpc/llama-cpp backend-assets/grpc/llama-stable backend-assets/grpc/gpt4all backend-assets/grpc/dolly backend-assets/grpc/gpt2 backend-assets/grpc/gptj backend-assets/grpc/gptneox backend-assets/grpc/mpt backend-assets/grpc/replit backend-assets/grpc/starcoder backend-assets/grpc/rwkv backend-assets/grpc/whisper $(OPTIONAL_GRPC)
|
||||
|
||||
.PHONY: all test build vendor
|
||||
|
||||
@ -223,7 +225,7 @@ go-llama/libbinding.a: go-llama
|
||||
go-llama-stable/libbinding.a: go-llama-stable
|
||||
$(MAKE) -C go-llama-stable BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
|
||||
|
||||
go-piper/libpiper_binding.a:
|
||||
go-piper/libpiper_binding.a: go-piper
|
||||
$(MAKE) -C go-piper libpiper_binding.a example/main
|
||||
|
||||
get-sources: go-llama go-llama-stable go-ggllm go-ggml-transformers gpt4all go-piper go-rwkv whisper.cpp go-bert bloomz go-stable-diffusion
|
||||
@ -280,6 +282,7 @@ clean: ## Remove build related file
|
||||
rm -rf ./go-ggllm
|
||||
rm -rf $(BINARY_NAME)
|
||||
rm -rf release/
|
||||
$(MAKE) -C backend/cpp/llama clean
|
||||
|
||||
## Build:
|
||||
|
||||
@ -395,6 +398,16 @@ ifeq ($(BUILD_TYPE),metal)
|
||||
cp go-llama/build/bin/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend/cpp/llama/grpc-server:
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
|
||||
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
|
||||
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
|
||||
# TODO: every binary should have its own folder instead, so can have different metal implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-stable: backend-assets/grpc go-llama-stable/libbinding.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama-stable
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-llama-stable LIBRARY_PATH=$(shell pwd)/go-llama \
|
||||
@ -451,9 +464,12 @@ backend-assets/grpc/bert-embeddings: backend-assets/grpc go-bert/libgobert.a
|
||||
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./cmd/grpc/langchain-huggingface/
|
||||
|
||||
backend-assets/grpc/stablediffusion: backend-assets/grpc go-stable-diffusion/libstablediffusion.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-stable-diffusion/ LIBRARY_PATH=$(shell pwd)/go-stable-diffusion/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./cmd/grpc/stablediffusion/
|
||||
backend-assets/grpc/stablediffusion: backend-assets/grpc
|
||||
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
|
||||
$(MAKE) go-stable-diffusion/libstablediffusion.a; \
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-stable-diffusion/ LIBRARY_PATH=$(shell pwd)/go-stable-diffusion/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./cmd/grpc/stablediffusion/; \
|
||||
fi
|
||||
|
||||
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data go-piper/libpiper_binding.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(shell pwd)/go-piper \
|
||||
|
57
backend/cpp/llama/CMakeLists.txt
Normal file
57
backend/cpp/llama/CMakeLists.txt
Normal file
@ -0,0 +1,57 @@
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
set(TARGET grpc-server)
|
||||
set(_PROTOBUF_LIBPROTOBUF libprotobuf)
|
||||
set(_REFLECTION grpc++_reflection)
|
||||
|
||||
find_package(absl CONFIG REQUIRED)
|
||||
find_package(Protobuf CONFIG REQUIRED)
|
||||
find_package(gRPC CONFIG REQUIRED)
|
||||
|
||||
find_program(_PROTOBUF_PROTOC protoc)
|
||||
set(_GRPC_GRPCPP grpc++)
|
||||
find_program(_GRPC_CPP_PLUGIN_EXECUTABLE grpc_cpp_plugin)
|
||||
|
||||
include_directories(${CMAKE_CURRENT_BINARY_DIR})
|
||||
include_directories(${Protobuf_INCLUDE_DIRS})
|
||||
|
||||
message(STATUS "Using protobuf ${Protobuf_VERSION} ${Protobuf_INCLUDE_DIRS} ${CMAKE_CURRENT_BINARY_DIR}")
|
||||
|
||||
|
||||
# Proto file
|
||||
get_filename_component(hw_proto "../../../../../../pkg/grpc/proto/backend.proto" ABSOLUTE)
|
||||
get_filename_component(hw_proto_path "${hw_proto}" PATH)
|
||||
|
||||
# Generated sources
|
||||
set(hw_proto_srcs "${CMAKE_CURRENT_BINARY_DIR}/backend.pb.cc")
|
||||
set(hw_proto_hdrs "${CMAKE_CURRENT_BINARY_DIR}/backend.pb.h")
|
||||
set(hw_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/backend.grpc.pb.cc")
|
||||
set(hw_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/backend.grpc.pb.h")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT "${hw_proto_srcs}" "${hw_proto_hdrs}" "${hw_grpc_srcs}" "${hw_grpc_hdrs}"
|
||||
COMMAND ${_PROTOBUF_PROTOC}
|
||||
ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}"
|
||||
--cpp_out "${CMAKE_CURRENT_BINARY_DIR}"
|
||||
-I "${hw_proto_path}"
|
||||
--plugin=protoc-gen-grpc="${_GRPC_CPP_PLUGIN_EXECUTABLE}"
|
||||
"${hw_proto}"
|
||||
DEPENDS "${hw_proto}")
|
||||
|
||||
# hw_grpc_proto
|
||||
add_library(hw_grpc_proto
|
||||
${hw_grpc_srcs}
|
||||
${hw_grpc_hdrs}
|
||||
${hw_proto_srcs}
|
||||
${hw_proto_hdrs})
|
||||
|
||||
add_executable(${TARGET} grpc-server.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
|
||||
absl::flags_parse
|
||||
gRPC::${_REFLECTION}
|
||||
gRPC::${_GRPC_GRPCPP}
|
||||
protobuf::${_PROTOBUF_LIBPROTOBUF})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
44
backend/cpp/llama/Makefile
Normal file
44
backend/cpp/llama/Makefile
Normal file
@ -0,0 +1,44 @@
|
||||
|
||||
LLAMA_VERSION?=24ba3d829e31a6eda3fa1723f692608c2fa3adda
|
||||
|
||||
CMAKE_ARGS?=
|
||||
BUILD_TYPE?=
|
||||
|
||||
# If build type is cublas, then we set -DLLAMA_CUBLAS=ON to CMAKE_ARGS automatically
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CMAKE_ARGS+=-DLLAMA_CUBLAS=ON
|
||||
# If build type is openblas then we set -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
# to CMAKE_ARGS automatically
|
||||
else ifeq ($(BUILD_TYPE),openblas)
|
||||
CMAKE_ARGS+=-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
# If build type is clblast (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
else ifeq ($(BUILD_TYPE),clblast)
|
||||
CMAKE_ARGS+=-DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
|
||||
else ifeq ($(BUILD_TYPE),hipblas)
|
||||
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
|
||||
endif
|
||||
|
||||
llama.cpp:
|
||||
git clone --recurse-submodules https://github.com/ggerganov/llama.cpp llama.cpp
|
||||
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
llama.cpp/examples/grpc-server:
|
||||
mkdir -p llama.cpp/examples/grpc-server
|
||||
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
|
||||
|
||||
rebuild:
|
||||
cp -rfv $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
rm -rf grpc-server
|
||||
$(MAKE) grpc-server
|
||||
|
||||
clean:
|
||||
rm -rf llama.cpp
|
||||
rm -rf grpc-server
|
||||
|
||||
grpc-server: llama.cpp llama.cpp/examples/grpc-server
|
||||
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release
|
||||
cp llama.cpp/build/bin/grpc-server .
|
964
backend/cpp/llama/grpc-server.cpp
Normal file
964
backend/cpp/llama/grpc-server.cpp
Normal file
@ -0,0 +1,964 @@
|
||||
// llama.cpp gRPC C++ backend server
|
||||
//
|
||||
// Ettore Di Giacinto <mudler@localai.io>
|
||||
//
|
||||
// This is a gRPC server for llama.cpp compatible with the LocalAI proto
|
||||
// Note: this is a re-adaptation of the original llama.cpp example/server.cpp for HTTP,
|
||||
// but modified to work with gRPC
|
||||
//
|
||||
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <getopt.h>
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
#include "backend.pb.h"
|
||||
#include "backend.grpc.pb.h"
|
||||
|
||||
// include std::regex
|
||||
#include <regex>
|
||||
#include <grpcpp/ext/proto_server_reflection_plugin.h>
|
||||
#include <grpcpp/grpcpp.h>
|
||||
#include <grpcpp/health_check_service_interface.h>
|
||||
|
||||
using grpc::Server;
|
||||
using grpc::ServerBuilder;
|
||||
using grpc::ServerContext;
|
||||
using grpc::Status;
|
||||
|
||||
|
||||
using backend::HealthMessage;
|
||||
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output
|
||||
{
|
||||
struct token_prob
|
||||
{
|
||||
llama_token tok;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
llama_token tok;
|
||||
};
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
||||
{
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
enum stop_type
|
||||
{
|
||||
STOP_FULL,
|
||||
STOP_PARTIAL,
|
||||
};
|
||||
|
||||
static bool ends_with(const std::string &str, const std::string &suffix)
|
||||
{
|
||||
return str.size() >= suffix.size() &&
|
||||
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
|
||||
static size_t find_partial_stop_string(const std::string &stop,
|
||||
const std::string &text)
|
||||
{
|
||||
if (!text.empty() && !stop.empty())
|
||||
{
|
||||
const char text_last_char = text.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
||||
{
|
||||
if (stop[char_index] == text_last_char)
|
||||
{
|
||||
const std::string current_partial = stop.substr(0, char_index + 1);
|
||||
if (ends_with(text, current_partial))
|
||||
{
|
||||
return text.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
||||
{
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin)
|
||||
{
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
||||
{
|
||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||
// (size > 1 meaning it's already a known token)
|
||||
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << std::hex << (out[0] & 0xff);
|
||||
std::string res(ss.str());
|
||||
out = "byte: \\x" + res;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
struct llama_server_context
|
||||
{
|
||||
bool stream = false;
|
||||
bool has_next_token = false;
|
||||
std::string generated_text;
|
||||
std::vector<completion_token_output> generated_token_probs;
|
||||
|
||||
size_t num_prompt_tokens = 0;
|
||||
size_t num_tokens_predicted = 0;
|
||||
size_t n_past = 0;
|
||||
size_t n_remain = 0;
|
||||
|
||||
// json prompt;
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> last_n_tokens;
|
||||
|
||||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
gpt_params params;
|
||||
int n_ctx;
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar *grammar = nullptr;
|
||||
|
||||
bool truncated = false;
|
||||
bool stopped_eos = false;
|
||||
bool stopped_word = false;
|
||||
bool stopped_limit = false;
|
||||
std::string stopping_word;
|
||||
int32_t multibyte_pending = 0;
|
||||
|
||||
std::mutex mutex;
|
||||
|
||||
std::unique_lock<std::mutex> lock()
|
||||
{
|
||||
return std::unique_lock<std::mutex>(mutex);
|
||||
}
|
||||
|
||||
~llama_server_context()
|
||||
{
|
||||
if (ctx)
|
||||
{
|
||||
llama_free(ctx);
|
||||
ctx = nullptr;
|
||||
}
|
||||
if (model)
|
||||
{
|
||||
llama_free_model(model);
|
||||
model = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void rewind()
|
||||
{
|
||||
params.antiprompt.clear();
|
||||
params.grammar.clear();
|
||||
num_prompt_tokens = 0;
|
||||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
generated_text.reserve(n_ctx);
|
||||
generated_token_probs.clear();
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
stopped_limit = false;
|
||||
stopping_word = "";
|
||||
multibyte_pending = 0;
|
||||
n_remain = 0;
|
||||
n_past = 0;
|
||||
|
||||
if (grammar != nullptr) {
|
||||
llama_grammar_free(grammar);
|
||||
grammar = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
bool loadModel(const gpt_params ¶ms_)
|
||||
{
|
||||
printf("load model %s\n", params_.model.c_str());
|
||||
|
||||
params = params_;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == nullptr)
|
||||
{
|
||||
printf("unable to load model %s\n", params_.model.c_str());
|
||||
return false;
|
||||
}
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
last_n_tokens.resize(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokenize_array(const char **prompts, bool add_bos) const
|
||||
{
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
// or the first element of the json_prompt array is a string.
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
|
||||
|
||||
bool first = true;
|
||||
// Iterate over prompts
|
||||
for (const char **p = prompts; *p != nullptr; ++p)
|
||||
{
|
||||
auto s = std::string(*p);
|
||||
std::vector<llama_token> pp;
|
||||
if (first)
|
||||
{
|
||||
pp = ::llama_tokenize(ctx, s, add_bos);
|
||||
first = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
pp = ::llama_tokenize(ctx, s, false);
|
||||
}
|
||||
prompt_tokens.insert(prompt_tokens.end(), pp.begin(), pp.end());
|
||||
}
|
||||
|
||||
|
||||
return prompt_tokens;
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokenize_string(const char *prompt, bool add_bos) const
|
||||
{
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
// or the first element of the json_prompt array is a string.
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
|
||||
auto s = std::string(prompt);
|
||||
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
|
||||
|
||||
return prompt_tokens;
|
||||
}
|
||||
|
||||
bool loadGrammar()
|
||||
{
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
printf("grammar parse error");
|
||||
return false;
|
||||
}
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
printf("EOS token is disabled, which will cause most grammars to fail");
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void loadInfill()
|
||||
{
|
||||
bool suff_rm_leading_spc = true;
|
||||
if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
suff_rm_leading_spc = false;
|
||||
}
|
||||
|
||||
auto prefix_tokens = tokenize_string(params.input_prefix.c_str(), false);
|
||||
auto suffix_tokens = tokenize_string(params.input_suffix.c_str(), false);
|
||||
const int space_token = 29871;
|
||||
if (suff_rm_leading_spc && suffix_tokens[0] == space_token) {
|
||||
suffix_tokens.erase(suffix_tokens.begin());
|
||||
}
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||
auto prompt_tokens = prefix_tokens;
|
||||
|
||||
num_prompt_tokens = prompt_tokens.size();
|
||||
|
||||
if (params.n_keep < 0)
|
||||
{
|
||||
params.n_keep = (int)num_prompt_tokens;
|
||||
}
|
||||
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||
{
|
||||
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
||||
// todo we probably want to cut from both sides
|
||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||
n_past--;
|
||||
}
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
has_next_token = true;
|
||||
}
|
||||
void loadPrompt(std::string prompt)
|
||||
{
|
||||
auto prompt_tokens = tokenize_string(prompt.c_str(), true); // always add BOS
|
||||
|
||||
num_prompt_tokens = prompt_tokens.size();
|
||||
|
||||
if (params.n_keep < 0)
|
||||
{
|
||||
params.n_keep = (int)num_prompt_tokens;
|
||||
}
|
||||
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t)n_ctx)
|
||||
{
|
||||
const int n_left = (n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
|
||||
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
n_past--;
|
||||
}
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
has_next_token = true;
|
||||
}
|
||||
|
||||
void beginCompletion()
|
||||
{
|
||||
// number of tokens to keep when resetting context
|
||||
n_remain = params.n_predict;
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
}
|
||||
|
||||
completion_token_output nextToken()
|
||||
{
|
||||
completion_token_output result;
|
||||
result.tok = -1;
|
||||
|
||||
if (embd.size() >= (size_t)n_ctx)
|
||||
{
|
||||
// Shift context
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
for (size_t i = params.n_keep + 1 + n_discard; i < embd.size(); i++)
|
||||
{
|
||||
embd[i - n_discard] = embd[i];
|
||||
}
|
||||
embd.resize(embd.size() - n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
truncated = true;
|
||||
|
||||
}
|
||||
|
||||
bool tg = true;
|
||||
while (n_past < embd.size())
|
||||
{
|
||||
int n_eval = (int)embd.size() - n_past;
|
||||
tg = n_eval == 1;
|
||||
if (n_eval > params.n_batch)
|
||||
{
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
|
||||
{
|
||||
|
||||
has_next_token = false;
|
||||
return result;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
|
||||
if (params.n_predict == 0)
|
||||
{
|
||||
has_next_token = false;
|
||||
result.tok = llama_token_eos(ctx);
|
||||
return result;
|
||||
}
|
||||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(llama_n_vocab(model));
|
||||
|
||||
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int32_t n_probs = params.n_probs;
|
||||
if (params.temp <= 0 && n_probs > 0)
|
||||
{
|
||||
// For llama_sample_token_greedy we need to sort candidates
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||
{
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
}
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(result.tok);
|
||||
if (tg) {
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(result.tok);
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
|
||||
{
|
||||
// stopping_word = llama_token_to_piece(ctx, embd.back());
|
||||
has_next_token = false;
|
||||
stopped_eos = true;
|
||||
return result;
|
||||
}
|
||||
|
||||
has_next_token = params.n_predict == -1 || n_remain != 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
|
||||
const stop_type type)
|
||||
{
|
||||
size_t stop_pos = std::string::npos;
|
||||
for (const std::string &word : params.antiprompt)
|
||||
{
|
||||
size_t pos;
|
||||
if (type == STOP_FULL)
|
||||
{
|
||||
const size_t tmp = word.size() + last_token_size;
|
||||
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
||||
pos = text.find(word, from_pos);
|
||||
}
|
||||
else
|
||||
{
|
||||
pos = find_partial_stop_string(word, text);
|
||||
}
|
||||
if (pos != std::string::npos &&
|
||||
(stop_pos == std::string::npos || pos < stop_pos))
|
||||
{
|
||||
if (type == STOP_FULL)
|
||||
{
|
||||
stopping_word = word;
|
||||
stopped_word = true;
|
||||
has_next_token = false;
|
||||
}
|
||||
stop_pos = pos;
|
||||
}
|
||||
}
|
||||
return stop_pos;
|
||||
}
|
||||
|
||||
completion_token_output doCompletion()
|
||||
{
|
||||
auto token_with_probs = nextToken();
|
||||
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
||||
generated_text += token_text;
|
||||
|
||||
if (params.n_probs > 0)
|
||||
{
|
||||
generated_token_probs.push_back(token_with_probs);
|
||||
}
|
||||
|
||||
if (multibyte_pending > 0)
|
||||
{
|
||||
multibyte_pending -= token_text.size();
|
||||
}
|
||||
else if (token_text.size() == 1)
|
||||
{
|
||||
const char c = token_text[0];
|
||||
// 2-byte characters: 110xxxxx 10xxxxxx
|
||||
if ((c & 0xE0) == 0xC0)
|
||||
{
|
||||
multibyte_pending = 1;
|
||||
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
|
||||
}
|
||||
else if ((c & 0xF0) == 0xE0)
|
||||
{
|
||||
multibyte_pending = 2;
|
||||
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
||||
}
|
||||
else if ((c & 0xF8) == 0xF0)
|
||||
{
|
||||
multibyte_pending = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
multibyte_pending = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (multibyte_pending > 0 && !has_next_token)
|
||||
{
|
||||
has_next_token = true;
|
||||
n_remain++;
|
||||
}
|
||||
|
||||
if (!has_next_token && n_remain == 0)
|
||||
{
|
||||
stopped_limit = true;
|
||||
}
|
||||
|
||||
return token_with_probs;
|
||||
}
|
||||
|
||||
std::vector<float> getEmbedding()
|
||||
{
|
||||
static const int n_embd = llama_n_embd(model);
|
||||
if (!params.embedding)
|
||||
{
|
||||
printf("embedding disabled");
|
||||
return std::vector<float>(n_embd, 0.0f);
|
||||
}
|
||||
const float *data = llama_get_embeddings(ctx);
|
||||
std::vector<float> embedding(data, data + n_embd);
|
||||
return embedding;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama)
|
||||
{
|
||||
gpt_params default_params;
|
||||
|
||||
llama.stream = streaming;
|
||||
llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
|
||||
llama.params.top_k = predict->topk();
|
||||
llama.params.top_p = predict->topp();
|
||||
llama.params.tfs_z = predict->tailfreesamplingz();
|
||||
llama.params.typical_p = predict->typicalp();
|
||||
llama.params.repeat_last_n = predict->repeat();
|
||||
llama.params.temp = predict->temperature();
|
||||
llama.params.repeat_penalty = predict->penalty();
|
||||
llama.params.presence_penalty = predict->presencepenalty();
|
||||
llama.params.frequency_penalty = predict->frequencypenalty();
|
||||
llama.params.mirostat = predict->mirostat();
|
||||
llama.params.mirostat_tau = predict->mirostattau();
|
||||
llama.params.mirostat_eta = predict->mirostateta();
|
||||
llama.params.penalize_nl = predict->penalizenl();
|
||||
llama.params.n_keep = predict->nkeep();
|
||||
llama.params.seed = predict->seed();
|
||||
llama.params.grammar = predict->grammar();
|
||||
// llama.params.n_probs = predict->
|
||||
llama.params.prompt = predict->prompt();
|
||||
|
||||
llama.params.logit_bias.clear();
|
||||
|
||||
if (predict->ignoreeos())
|
||||
{
|
||||
llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
// const auto &logit_bias = body.find("logit_bias");
|
||||
// if (logit_bias != body.end() && logit_bias->is_array())
|
||||
// {
|
||||
// const int n_vocab = llama_n_vocab(llama.model);
|
||||
// for (const auto &el : *logit_bias)
|
||||
// {
|
||||
// if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
||||
// {
|
||||
// llama_token tok = el[0].get<llama_token>();
|
||||
// if (tok >= 0 && tok < n_vocab)
|
||||
// {
|
||||
// if (el[1].is_number())
|
||||
// {
|
||||
// llama.params.logit_bias[tok] = el[1].get<float>();
|
||||
// }
|
||||
// else if (el[1].is_boolean() && !el[1].get<bool>())
|
||||
// {
|
||||
// llama.params.logit_bias[tok] = -INFINITY;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
llama.params.antiprompt.clear();
|
||||
for (const std::string& stopPrompt : predict->stopprompts()) {
|
||||
if (!stopPrompt.empty())
|
||||
{
|
||||
llama.params.antiprompt.push_back(stopPrompt);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void params_parse(const backend::ModelOptions* request,
|
||||
gpt_params & params) {
|
||||
|
||||
params.model = request->modelfile();
|
||||
// params.model_alias ??
|
||||
params.model_alias = request->modelfile();
|
||||
params.n_ctx = request->contextsize();
|
||||
params.memory_f16 = request->f16memory();
|
||||
params.n_threads = request->threads();
|
||||
params.n_gpu_layers = request->ngpulayers();
|
||||
params.n_batch = request->nbatch();
|
||||
|
||||
if (!request->tensorsplit().empty()) {
|
||||
std::string arg_next = request->tensorsplit();
|
||||
|
||||
// split string by , and /
|
||||
const std::regex regex{ R"([,/]+)" };
|
||||
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
|
||||
std::vector<std::string> split_arg{ it, {} };
|
||||
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
|
||||
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) {
|
||||
if (i_device < split_arg.size()) {
|
||||
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
||||
}
|
||||
else {
|
||||
params.tensor_split[i_device] = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!request->maingpu().empty()) {
|
||||
params.main_gpu = std::stoi(request->maingpu());
|
||||
}
|
||||
// TODO: lora needs also a scale factor
|
||||
//params.lora_adapter = request->loraadapter();
|
||||
//params.lora_base = request->lorabase();
|
||||
params.use_mlock = request->mlock();
|
||||
params.use_mmap = request->mmap();
|
||||
params.embedding = request->embeddings();
|
||||
}
|
||||
|
||||
static bool is_at_eob(llama_server_context &server_context, const llama_token *tokens, const size_t n_tokens) {
|
||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
|
||||
}
|
||||
|
||||
// Function matching type llama_beam_search_callback_fn_t.
|
||||
// Custom callback example is called each time the beams lengths increase:
|
||||
// * Show progress by printing ',' following by number of convergent beam tokens if any.
|
||||
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
|
||||
// This is also called when the stop condition is met.
|
||||
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
|
||||
static void beam_search_callback(void *callback_data, llama_beams_state beams_state) {
|
||||
auto & llama = *static_cast<llama_server_context*>(callback_data);
|
||||
// Mark beams as EOS as needed.
|
||||
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
|
||||
llama_beam_view& beam_view = beams_state.beam_views[i];
|
||||
if (!beam_view.eob && is_at_eob(llama, beam_view.tokens, beam_view.n_tokens)) {
|
||||
beam_view.eob = true;
|
||||
}
|
||||
}
|
||||
printf(","); // Show progress
|
||||
if (const size_t n = beams_state.common_prefix_length) {
|
||||
llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
|
||||
assert(0u < beams_state.n_beams);
|
||||
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
|
||||
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
|
||||
printf("%zu", n);
|
||||
}
|
||||
fflush(stdout);
|
||||
#if 0 // DEBUG: print current beams for this iteration
|
||||
std::cout << "\n\nCurrent beams:\n";
|
||||
for (size_t i=0 ; i < beams_state.n_beams ; ++i) {
|
||||
std::cout << "beams["<<i<<"]: " << ostream_beam_view{state.ctx,beams_state.beam_views[i]} << std::endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
struct token_translator {
|
||||
llama_context * ctx;
|
||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
||||
std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); }
|
||||
};
|
||||
|
||||
|
||||
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama)
|
||||
{
|
||||
auto & gtps = llama.generated_token_probs;
|
||||
auto translator = token_translator{llama.ctx};
|
||||
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
|
||||
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
|
||||
if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
|
||||
llama.generated_text.reserve(llama.generated_text.size() + len);
|
||||
}
|
||||
for (const completion_token_output & cto : gtps) {
|
||||
llama.generated_text += translator(cto);
|
||||
}
|
||||
}
|
||||
|
||||
// GRPC Server start
|
||||
class BackendServiceImpl final : public backend::Backend::Service {
|
||||
// The class has a llama instance that is shared across all RPCs
|
||||
llama_server_context llama;
|
||||
public:
|
||||
grpc::Status Health(ServerContext* context, const backend::HealthMessage* request, backend::Reply* reply) {
|
||||
// Implement Health RPC
|
||||
reply->set_message("OK");
|
||||
return Status::OK;
|
||||
}
|
||||
|
||||
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
|
||||
// Implement LoadModel RPC
|
||||
gpt_params params;
|
||||
params_parse(request, params);
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
// load the model
|
||||
if (!llama.loadModel(params))
|
||||
{
|
||||
result->set_message("Failed loading model");
|
||||
result->set_success(false);
|
||||
return Status::CANCELLED;
|
||||
}
|
||||
result->set_message("Loading succeeded");
|
||||
result->set_success(true);
|
||||
return Status::OK;
|
||||
}
|
||||
grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter<backend::Reply>* writer) override {
|
||||
// Implement the streaming logic here based on the request options
|
||||
// You can use writer->Write(response) to send a reply to the client
|
||||
// and return grpc::Status::OK when the operation is complete.
|
||||
auto lock = llama.lock();
|
||||
|
||||
llama.rewind();
|
||||
|
||||
llama_reset_timings(llama.ctx);
|
||||
|
||||
parse_options_completion(false, request, llama);
|
||||
|
||||
if (!llama.loadGrammar())
|
||||
{
|
||||
//res.status = 400;
|
||||
return Status::CANCELLED;
|
||||
}
|
||||
|
||||
llama.loadPrompt(request->prompt());
|
||||
llama.beginCompletion();
|
||||
size_t sent_count = 0;
|
||||
size_t sent_token_probs_index = 0;
|
||||
|
||||
while (llama.has_next_token) {
|
||||
const completion_token_output token_with_probs = llama.doCompletion();
|
||||
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
|
||||
continue;
|
||||
}
|
||||
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
|
||||
|
||||
size_t pos = std::min(sent_count, llama.generated_text.size());
|
||||
|
||||
const std::string str_test = llama.generated_text.substr(pos);
|
||||
bool is_stop_full = false;
|
||||
size_t stop_pos =
|
||||
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
||||
if (stop_pos != std::string::npos) {
|
||||
is_stop_full = true;
|
||||
llama.generated_text.erase(
|
||||
llama.generated_text.begin() + pos + stop_pos,
|
||||
llama.generated_text.end());
|
||||
pos = std::min(sent_count, llama.generated_text.size());
|
||||
} else {
|
||||
is_stop_full = false;
|
||||
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
||||
STOP_PARTIAL);
|
||||
}
|
||||
|
||||
if (
|
||||
stop_pos == std::string::npos ||
|
||||
// Send rest of the text if we are at the end of the generation
|
||||
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
|
||||
) {
|
||||
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
|
||||
|
||||
sent_count += to_send.size();
|
||||
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
if (probs_pos < probs_stop_pos) {
|
||||
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||
}
|
||||
sent_token_probs_index = probs_stop_pos;
|
||||
}
|
||||
backend::Reply reply;
|
||||
reply.set_message(to_send);
|
||||
|
||||
// Send the reply
|
||||
writer->Write(reply);
|
||||
}
|
||||
}
|
||||
|
||||
llama_print_timings(llama.ctx);
|
||||
|
||||
llama.mutex.unlock();
|
||||
lock.release();
|
||||
return grpc::Status::OK;
|
||||
}
|
||||
|
||||
|
||||
grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) {
|
||||
auto lock = llama.lock();
|
||||
llama.rewind();
|
||||
llama_reset_timings(llama.ctx);
|
||||
parse_options_completion(false, request, llama);
|
||||
|
||||
if (!llama.loadGrammar())
|
||||
{
|
||||
//res.status = 400;
|
||||
return Status::CANCELLED;
|
||||
}
|
||||
|
||||
llama.loadPrompt(request->prompt());
|
||||
llama.beginCompletion();
|
||||
|
||||
if (llama.params.n_beams) {
|
||||
// Fill llama.generated_token_probs vector with final beam.
|
||||
llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
|
||||
llama.n_past, llama.n_remain);
|
||||
// Translate llama.generated_token_probs to llama.generated_text.
|
||||
append_to_generated_text_from_generated_token_probs(llama);
|
||||
} else {
|
||||
size_t stop_pos = std::string::npos;
|
||||
|
||||
while (llama.has_next_token) {
|
||||
const completion_token_output token_with_probs = llama.doCompletion();
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(llama.ctx, token_with_probs.tok);
|
||||
|
||||
stop_pos = llama.findStoppingStrings(llama.generated_text,
|
||||
token_text.size(), STOP_FULL);
|
||||
}
|
||||
|
||||
if (stop_pos == std::string::npos) {
|
||||
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
|
||||
}
|
||||
if (stop_pos != std::string::npos) {
|
||||
llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
|
||||
llama.generated_text.end());
|
||||
}
|
||||
}
|
||||
|
||||
auto probs = llama.generated_token_probs;
|
||||
if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
}
|
||||
reply->set_message(llama.generated_text);
|
||||
return grpc::Status::OK;
|
||||
}
|
||||
};
|
||||
|
||||
void RunServer(const std::string& server_address) {
|
||||
BackendServiceImpl service;
|
||||
|
||||
ServerBuilder builder;
|
||||
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
|
||||
builder.RegisterService(&service);
|
||||
|
||||
std::unique_ptr<Server> server(builder.BuildAndStart());
|
||||
std::cout << "Server listening on " << server_address << std::endl;
|
||||
server->Wait();
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
std::string server_address("localhost:50051");
|
||||
|
||||
// Define long and short options
|
||||
struct option long_options[] = {
|
||||
{"addr", required_argument, nullptr, 'a'},
|
||||
{nullptr, 0, nullptr, 0}
|
||||
};
|
||||
|
||||
// Parse command-line arguments
|
||||
int option;
|
||||
int option_index = 0;
|
||||
while ((option = getopt_long(argc, argv, "a:", long_options, &option_index)) != -1) {
|
||||
switch (option) {
|
||||
case 'a':
|
||||
server_address = optarg;
|
||||
break;
|
||||
default:
|
||||
std::cerr << "Usage: " << argv[0] << " [--addr=<address>] or [-a <address>]" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
RunServer(server_address);
|
||||
return 0;
|
||||
}
|
@ -17,6 +17,7 @@ import (
|
||||
const (
|
||||
LlamaBackend = "llama"
|
||||
LlamaStableBackend = "llama-stable"
|
||||
LLamaCPP = "llama-cpp"
|
||||
BloomzBackend = "bloomz"
|
||||
StarcoderBackend = "starcoder"
|
||||
GPTJBackend = "gptj"
|
||||
@ -41,8 +42,9 @@ const (
|
||||
)
|
||||
|
||||
var AutoLoadBackends []string = []string{
|
||||
LlamaBackend,
|
||||
LLamaCPP,
|
||||
LlamaStableBackend,
|
||||
LlamaBackend,
|
||||
Gpt4All,
|
||||
FalconBackend,
|
||||
GPTNeoXBackend,
|
||||
@ -175,11 +177,6 @@ func (ml *ModelLoader) BackendLoader(opts ...Option) (model *grpc.Client, err er
|
||||
}
|
||||
|
||||
switch backend {
|
||||
case LlamaBackend, LlamaStableBackend, GPTJBackend, DollyBackend,
|
||||
MPTBackend, Gpt2Backend, FalconBackend,
|
||||
GPTNeoXBackend, ReplitBackend, StarcoderBackend, BloomzBackend,
|
||||
RwkvBackend, LCHuggingFaceBackend, BertEmbeddingsBackend, FalconGGMLBackend, StableDiffusionBackend, WhisperBackend:
|
||||
return ml.LoadModel(o.model, ml.grpcModel(backend, o))
|
||||
case Gpt4AllLlamaBackend, Gpt4AllMptBackend, Gpt4AllJBackend, Gpt4All:
|
||||
o.gRPCOptions.LibrarySearchPath = filepath.Join(o.assetDir, "backend-assets", "gpt4all")
|
||||
return ml.LoadModel(o.model, ml.grpcModel(Gpt4All, o))
|
||||
@ -187,7 +184,7 @@ func (ml *ModelLoader) BackendLoader(opts ...Option) (model *grpc.Client, err er
|
||||
o.gRPCOptions.LibrarySearchPath = filepath.Join(o.assetDir, "backend-assets", "espeak-ng-data")
|
||||
return ml.LoadModel(o.model, ml.grpcModel(PiperBackend, o))
|
||||
default:
|
||||
return nil, fmt.Errorf("backend unsupported: %s", o.backendString)
|
||||
return ml.LoadModel(o.model, ml.grpcModel(backend, o))
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user