* feat(intel): add diffusers support
* try to consume upstream container image
* Debug
* Manually install deps
* Map transformers/hf cache dir to modelpath if not specified
* fix(compel): update initialization, pass by all gRPC options
* fix: add dependencies, implement transformers for xpu
* base it from the oneapi image
* Add pillow
* set threads if specified when launching the API
* Skip conda install if intel
* defaults to non-intel
* ci: add to pipelines
* prepare compel only if enabled
* Skip conda install if intel
* fix cleanup
* Disable compel by default
* Install torch 2.1.0 with Intel
* Skip conda on some setups
* Detect python
* Quiet output
* Do not override system python with conda
* Prefer python3
* Fixups
* exllama2: do not install without conda (overrides pytorch version)
* exllama/exllama2: do not install if not using cuda
* Add missing dataset dependency
* Small fixups, symlink to python, add requirements
* Add neural_speed to the deps
* correctly handle model offloading
* fix: device_map == xpu
* go back at calling python, fixed at dockerfile level
* Exllama2 restricted to only nvidia gpus
* Tokenizer to xpu
* Dockerfile changes to build for ROCm
* Adjust linker flags for ROCm
* Update conda env for diffusers and transformers to use ROCm pytorch
* Update transformers conda env for ROCm
* ci: build hipblas images
* fixup rebase
* use self-hosted
Signed-off-by: mudler <mudler@localai.io>
* specify LD_LIBRARY_PATH only when BUILD_TYPE=hipblas
---------
Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: mudler <mudler@localai.io>
* feat(conda): share env between diffusers and bark
* Detect if env already exists
* share diffusers and petals
* tests: add petals
* Use smaller model for tests with petals
* test only model load on petals
* tests(petals): run only load model tests
* Revert "test only model load on petals"
This reverts commit 111cfa97f1.
* move transformers and sentencetransformers to common env
* Share also transformers-musicgen