#!/usr/bin/env python3 """ Extra gRPC server for MusicgenForConditionalGeneration models. """ from concurrent import futures import argparse import signal import sys import os import time import backend_pb2 import backend_pb2_grpc import grpc from scipy.io.wavfile import write as write_wav from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf import torch _ONE_DAY_IN_SECONDS = 60 * 60 * 24 # If MAX_WORKERS are specified in the environment use it, otherwise default to 1 MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) # Implement the BackendServicer class with the service methods class BackendServicer(backend_pb2_grpc.BackendServicer): """ A gRPC servicer for the backend service. This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding. """ def Health(self, request, context): """ A gRPC method that returns the health status of the backend service. Args: request: A HealthRequest object that contains the request parameters. context: A grpc.ServicerContext object that provides information about the RPC. Returns: A Reply object that contains the health status of the backend service. """ return backend_pb2.Reply(message=bytes("OK", 'utf-8')) def LoadModel(self, request, context): """ A gRPC method that loads a model into memory. Args: request: A LoadModelRequest object that contains the request parameters. context: A grpc.ServicerContext object that provides information about the RPC. Returns: A Result object that contains the result of the LoadModel operation. """ model_name = request.Model device = "cuda:0" if torch.cuda.is_available() else "cpu" try: self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device) self.tokenizer = AutoTokenizer.from_pretrained(model_name) except Exception as err: return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") return backend_pb2.Result(message="Model loaded successfully", success=True) def TTS(self, request, context): model_name = request.model voice = request.voice if voice == "": voice = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast." if model_name == "": return backend_pb2.Result(success=False, message="request.model is required") try: device = "cuda:0" if torch.cuda.is_available() else "cpu" input_ids = self.tokenizer(voice, return_tensors="pt").input_ids.to(device) prompt_input_ids = self.tokenizer(request.text, return_tensors="pt").input_ids.to(device) generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() print("[parler-tts] TTS generated!", file=sys.stderr) sf.write(request.dst, audio_arr, self.model.config.sampling_rate) print("[parler-tts] TTS saved to", request.dst, file=sys.stderr) print("[parler-tts] TTS for", file=sys.stderr) print(request, file=sys.stderr) except Exception as err: return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") return backend_pb2.Result(success=True) def serve(address): server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) server.add_insecure_port(address) server.start() print("[parler-tts] Server started. Listening on: " + address, file=sys.stderr) # Define the signal handler function def signal_handler(sig, frame): print("[parler-tts] Received termination signal. Shutting down...") server.stop(0) sys.exit(0) # Set the signal handlers for SIGINT and SIGTERM signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the gRPC server.") parser.add_argument( "--addr", default="localhost:50051", help="The address to bind the server to." ) args = parser.parse_args() print(f"[parler-tts] startup: {args}", file=sys.stderr) serve(args.addr)