import os from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA from langchain.vectorstores.base import VectorStoreRetriever base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1') # Load and process the text embedding = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_base=base_path) persist_directory = 'db' # Now we can load the persisted database from disk, and use it as normal. llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path) vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) retriever = VectorStoreRetriever(vectorstore=vectordb) qa = RetrievalQA.from_llm(llm=llm, retriever=retriever) query = "What the president said about taxes ?" print(qa.run(query))