#!/usr/bin/env python3 from concurrent import futures import time import argparse import signal import sys import os import backend_pb2 import backend_pb2_grpc import grpc import torch from transformers import AutoTokenizer, AutoModelForCausalLM from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel _ONE_DAY_IN_SECONDS = 60 * 60 * 24 # If MAX_WORKERS are specified in the environment use it, otherwise default to 1 MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) MAMBA_CHAT= os.environ.get('MAMBA_CHAT', '1') == '1' # Implement the BackendServicer class with the service methods class BackendServicer(backend_pb2_grpc.BackendServicer): """ A gRPC servicer that implements the Backend service defined in backend.proto. """ def generate(self,prompt, max_new_tokens): """ Generates text based on the given prompt and maximum number of new tokens. Args: prompt (str): The prompt to generate text from. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated text. """ self.generator.end_beam_search() # Tokenizing the input ids = self.generator.tokenizer.encode(prompt) self.generator.gen_begin_reuse(ids) initial_len = self.generator.sequence[0].shape[0] has_leading_space = False decoded_text = '' for i in range(max_new_tokens): token = self.generator.gen_single_token() if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): has_leading_space = True decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) if has_leading_space: decoded_text = ' ' + decoded_text if token.item() == self.generator.tokenizer.eos_token_id: break return decoded_text def Health(self, request, context): """ Returns a health check message. Args: request: The health check request. context: The gRPC context. Returns: backend_pb2.Reply: The health check reply. """ return backend_pb2.Reply(message=bytes("OK", 'utf-8')) def LoadModel(self, request, context): """ Loads a language model. Args: request: The load model request. context: The gRPC context. Returns: backend_pb2.Result: The load model result. """ try: tokenizerModel = request.Tokenizer if tokenizerModel == "": tokenizerModel = request.Model tokenizer = AutoTokenizer.from_pretrained(tokenizerModel) if MAMBA_CHAT: tokenizer.eos_token = "<|endoftext|>" tokenizer.pad_token = tokenizer.eos_token self.tokenizer = tokenizer self.model = MambaLMHeadModel.from_pretrained(request.Model, device="cuda", dtype=torch.float16) except Exception as err: return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") return backend_pb2.Result(message="Model loaded successfully", success=True) def Predict(self, request, context): """ Generates text based on the given prompt and sampling parameters. Args: request: The predict request. context: The gRPC context. Returns: backend_pb2.Result: The predict result. """ if request.TopP == 0: request.TopP = 0.9 max_tokens = request.Tokens if request.Tokens == 0: max_tokens = 2000 encoded_input = self.tokenizer(request.Prompt) out = self.model.generate(input_ids=encoded_input["input_ids"], max_length=max_tokens, temperature=request.Temperratur, top_p=request.TopP, eos_token_id=self.tokenizer.eos_token_id) decoded = self.tokenizer.batch_decode(out) generated_text = decoded[0] # Remove prompt from response if present if request.Prompt in generated_text: generated_text = generated_text.replace(request.Prompt, "") return backend_pb2.Result(message=bytes(generated_text, encoding='utf-8')) def PredictStream(self, request, context): """ Generates text based on the given prompt and sampling parameters, and streams the results. Args: request: The predict stream request. context: The gRPC context. Returns: backend_pb2.Result: The predict stream result. """ # Implement PredictStream RPC #for reply in some_data_generator(): # yield reply # Not implemented yet return self.Predict(request, context) def serve(address): server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) server.add_insecure_port(address) server.start() print("Server started. Listening on: " + address, file=sys.stderr) # Define the signal handler function def signal_handler(sig, frame): print("Received termination signal. Shutting down...") server.stop(0) sys.exit(0) # Set the signal handlers for SIGINT and SIGTERM signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the gRPC server.") parser.add_argument( "--addr", default="localhost:50051", help="The address to bind the server to." ) args = parser.parse_args() serve(args.addr)