package cli import ( "context" "errors" "fmt" "github.com/go-skynet/LocalAI/core/backend" "github.com/go-skynet/LocalAI/core/config" "github.com/go-skynet/LocalAI/core/schema" "github.com/go-skynet/LocalAI/pkg/model" ) type TranscriptCMD struct { Filename string `arg:""` Backend string `short:"b" default:"whisper" help:"Backend to run the transcription model"` Model string `short:"m" required:"" help:"Model name to run the TTS"` Language string `short:"l" help:"Language of the audio file"` Threads int `short:"t" default:"1" help:"Number of threads used for parallel computation"` ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"` BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"` } func (t *TranscriptCMD) Run(ctx *Context) error { opts := &config.ApplicationConfig{ ModelPath: t.ModelsPath, Context: context.Background(), AssetsDestination: t.BackendAssetsPath, } cl := config.NewBackendConfigLoader() ml := model.NewModelLoader(opts.ModelPath) if err := cl.LoadBackendConfigsFromPath(t.ModelsPath); err != nil { return err } c, exists := cl.GetBackendConfig(t.Model) if !exists { return errors.New("model not found") } c.Threads = &t.Threads defer ml.StopAllGRPC() tbs := backend.NewTranscriptionBackendService(ml, cl, opts) resultChannel := tbs.Transcribe(&schema.OpenAIRequest{ PredictionOptions: schema.PredictionOptions{ Language: t.Language, }, File: t.Filename, }) r := <-resultChannel if r.Error != nil { return r.Error } for _, segment := range r.Value.Segments { fmt.Println(segment.Start.String(), "-", segment.Text) } return nil }