import os from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.chains import VectorDBQA base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1') # Load and process the text embedding = OpenAIEmbeddings() persist_directory = 'db' # Now we can load the persisted database from disk, and use it as normal. vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb) query = "What the president said about taxes ?" print(qa.run(query))