import os # Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended) # os.environ['OPENAI_API_KEY']= "" from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.openai import OpenAI from llama_index import StorageContext, load_index_from_storage base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1') # This example uses text-davinci-003 by default; feel free to change if desired llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)) # Configure prompt parameters and initialise helper max_input_size = 256 num_output = 256 max_chunk_overlap = 10 prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) # Load documents from the 'data' directory documents = SimpleDirectoryReader('data').load_data() service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 257) index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context) index.storage_context.persist(persist_dir="./storage")