// llama.cpp gRPC C++ backend server // // Ettore Di Giacinto and llama.cpp authors // // This is a gRPC server for llama.cpp compatible with the LocalAI proto // Note: this is a re-adaptation of the original llama.cpp example/server.cpp for HTTP (https://github.com/ggerganov/llama.cpp/tree/master/examples/server), // but modified to work with gRPC // #include #include #include #include #include "clip.h" #include "llava.h" #include "stb_image.h" #include "common.h" #include "json.hpp" #include "llama.h" #include "grammar-parser.h" #include "backend.pb.h" #include "backend.grpc.pb.h" #include "utils.hpp" // include std::regex #include #include #include #include #include #include #include #include #include #include #include using grpc::Server; using grpc::ServerBuilder; using grpc::ServerContext; using grpc::Status; using backend::HealthMessage; ///// LLAMA.CPP server code below using json = nlohmann::json; struct server_params { std::string hostname = "127.0.0.1"; std::vector api_keys; std::string public_path = "examples/server/public"; std::string chat_template = ""; int32_t port = 8080; int32_t read_timeout = 600; int32_t write_timeout = 600; bool slots_endpoint = true; bool metrics_endpoint = false; }; bool server_verbose = false; bool server_log_json = true; static size_t common_part(const std::vector &a, const std::vector &b) { size_t i; for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) { } return i; } enum stop_type { STOP_FULL, STOP_PARTIAL, }; static bool ends_with(const std::string &str, const std::string &suffix) { return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); } static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { if (!text.empty() && !stop.empty()) { const char text_last_char = text.back(); for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { if (stop[char_index] == text_last_char) { const std::string current_partial = stop.substr(0, char_index + 1); if (ends_with(text, current_partial)) { return text.size() - char_index - 1; } } } } return std::string::npos; } // TODO: reuse llama_detokenize template static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) { std::string ret; for (; begin != end; ++begin) { ret += llama_token_to_piece(ctx, *begin); } return ret; } // format incomplete utf-8 multibyte character for output static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) { std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); // if the size is 1 and first bit is 1, meaning it's a partial character // (size > 1 meaning it's already a known token) if (out.size() == 1 && (out[0] & 0x80) == 0x80) { std::stringstream ss; ss << std::hex << (out[0] & 0xff); std::string res(ss.str()); out = "byte: \\x" + res; } return out; } // convert a vector of completion_token_output to json static json probs_vector_to_json(const llama_context *ctx, const std::vector &probs) { json out = json::array(); for (const auto &prob : probs) { json probs_for_token = json::array(); for (const auto &p : prob.probs) { std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); probs_for_token.push_back(json { {"tok_str", tok_str}, {"prob", p.prob}, }); } std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); out.push_back(json{ {"content", tok_str}, {"probs", probs_for_token}, }); } return out; } struct llama_client_slot { int id; int task_id = -1; struct slot_params params; slot_state state = IDLE; slot_command command = NONE; // used to determine the slot that has been used the longest int64_t t_last_used = -1; // generation props int32_t n_ctx = 0; // context size per slot int32_t n_past = 0; int32_t n_decoded = 0; int32_t n_remaining = -1; int32_t i_batch = -1; int32_t n_predict = -1; int32_t num_prompt_tokens = 0; int32_t num_prompt_tokens_processed = 0; json prompt; std::string generated_text; llama_token sampled; std::vector cache_tokens; std::vector generated_token_probs; bool infill = false; bool embedding = false; bool has_next_token = true; bool truncated = false; bool stopped_eos = false; bool stopped_word = false; bool stopped_limit = false; bool oaicompat = false; std::string oaicompat_model; std::string stopping_word; // sampling struct llama_sampling_params sparams; llama_sampling_context *ctx_sampling = nullptr; int32_t ga_i = 0; // group-attention state int32_t ga_n = 1; // group-attention factor int32_t ga_w = 512; // group-attention width int32_t n_past_se = 0; // self-extend // multimodal std::vector images; // stats size_t sent_count = 0; size_t sent_token_probs_index = 0; int64_t t_start_process_prompt; int64_t t_start_genereration; double t_prompt_processing; // ms double t_token_generation; // ms // multitasks int multitask_id = -1; void reset() { num_prompt_tokens = 0; generated_text = ""; truncated = false; stopped_eos = false; stopped_word = false; stopped_limit = false; stopping_word = ""; n_past = 0; sent_count = 0; sent_token_probs_index = 0; infill = false; ga_i = 0; n_past_se = 0; generated_token_probs.clear(); for (slot_image & img : images) { free(img.image_embedding); if (img.img_data) { clip_image_u8_free(img.img_data); } img.prefix_prompt = ""; } images.clear(); } bool has_budget(gpt_params &global_params) { if (params.n_predict == -1 && global_params.n_predict == -1) { return true; // limitless } n_remaining = -1; if (params.n_predict != -1) { n_remaining = params.n_predict - n_decoded; } else if (global_params.n_predict != -1) { n_remaining = global_params.n_predict - n_decoded; } return n_remaining > 0; // no budget } bool available() const { return state == IDLE && command == NONE; } bool is_processing() const { return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING; } void add_token_string(const completion_token_output &token) { if (command == RELEASE) { return; } cache_tokens.push_back(token.tok); generated_token_probs.push_back(token); } void release() { if (state == PROCESSING) { t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3; command = RELEASE; } } json get_formated_timings() { return json { {"prompt_n", num_prompt_tokens_processed}, {"prompt_ms", t_prompt_processing}, {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed}, {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed}, {"predicted_n", n_decoded}, {"predicted_ms", t_token_generation}, {"predicted_per_token_ms", t_token_generation / n_decoded}, {"predicted_per_second", 1e3 / t_token_generation * n_decoded}, }; } void print_timings() const { char buffer[512]; double t_token = t_prompt_processing / num_prompt_tokens_processed; double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed; sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)", t_prompt_processing, num_prompt_tokens_processed, t_token, n_tokens_second); LOG_INFO(buffer, { {"slot_id", id}, {"task_id", task_id}, {"t_prompt_processing", t_prompt_processing}, {"num_prompt_tokens_processed", num_prompt_tokens_processed}, {"t_token", t_token}, {"n_tokens_second", n_tokens_second}, }); t_token = t_token_generation / n_decoded; n_tokens_second = 1e3 / t_token_generation * n_decoded; sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)", t_token_generation, n_decoded, t_token, n_tokens_second); LOG_INFO(buffer, { {"slot_id", id}, {"task_id", task_id}, {"t_token_generation", t_token_generation}, {"n_decoded", n_decoded}, {"t_token", t_token}, {"n_tokens_second", n_tokens_second}, }); sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation); LOG_INFO(buffer, { {"slot_id", id}, {"task_id", task_id}, {"t_prompt_processing", t_prompt_processing}, {"t_token_generation", t_token_generation}, {"t_total", t_prompt_processing + t_token_generation}, }); } }; struct llama_metrics { uint64_t n_prompt_tokens_processed_total = 0; uint64_t n_tokens_predicted_total = 0; uint64_t n_prompt_tokens_processed = 0; uint64_t t_prompt_processing = 0; uint64_t n_tokens_predicted = 0; uint64_t t_tokens_generation = 0; void on_prompt_eval(const llama_client_slot &slot) { n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed; n_prompt_tokens_processed += slot.num_prompt_tokens_processed; t_prompt_processing += slot.t_prompt_processing; } void on_prediction(const llama_client_slot &slot) { n_tokens_predicted_total += slot.n_decoded; n_tokens_predicted += slot.n_decoded; t_tokens_generation += slot.t_token_generation; } void reset_bucket() { n_prompt_tokens_processed = 0; t_prompt_processing = 0; n_tokens_predicted = 0; t_tokens_generation = 0; } }; struct llama_server_context { llama_model *model = nullptr; llama_context *ctx = nullptr; clip_ctx *clp_ctx = nullptr; gpt_params params; llama_batch batch; bool multimodal = false; bool clean_kv_cache = true; bool all_slots_are_idle = false; bool add_bos_token = true; int32_t n_ctx; // total context for all clients / slots // system prompt bool system_need_update = false; std::string system_prompt; std::vector system_tokens; std::string name_user; // this should be the antiprompt std::string name_assistant; // slots / clients std::vector slots; json default_generation_settings_for_props; llama_server_queue queue_tasks; llama_server_response queue_results; llama_metrics metrics; ~llama_server_context() { if (ctx) { llama_free(ctx); ctx = nullptr; } if (model) { llama_free_model(model); model = nullptr; } } bool load_model(const gpt_params ¶ms_) { params = params_; if (!params.mmproj.empty()) { multimodal = true; LOG_INFO("Multi Modal Mode Enabled", {}); clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1); if(clp_ctx == nullptr) { LOG_ERROR("unable to load clip model", {{"model", params.mmproj}}); return false; } if (params.n_ctx < 2048) { // request larger context for the image embedding params.n_ctx = 2048; } } std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr) { LOG_ERROR("unable to load model", {{"model", params.model}}); return false; } if (multimodal) { const int n_embd_clip = clip_n_mmproj_embd(clp_ctx); const int n_embd_llm = llama_n_embd(model); if (n_embd_clip != n_embd_llm) { LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm); llama_free(ctx); llama_free_model(model); return false; } } n_ctx = llama_n_ctx(ctx); add_bos_token = llama_should_add_bos_token(model); return true; } void validate_model_chat_template(server_params & sparams) { llama_chat_message chat[] = {{"user", "test"}}; std::vector buf(1); int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size()); if (res < 0) { LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template } } void initialize() { // create slots all_slots_are_idle = true; const int32_t n_ctx_slot = n_ctx / params.n_parallel; LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}}); for (int i = 0; i < params.n_parallel; i++) { llama_client_slot slot; slot.id = i; slot.n_ctx = n_ctx_slot; slot.n_predict = params.n_predict; LOG_INFO("new slot", { {"slot_id", slot.id}, {"n_ctx_slot", slot.n_ctx} }); const int ga_n = params.grp_attn_n; const int ga_w = params.grp_attn_w; if (ga_n != 1) { GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT LOG_INFO("slot self-extend", { {"slot_id", slot.id}, {"ga_n", ga_n}, {"ga_w", ga_w} }); } slot.ga_i = 0; slot.ga_n = ga_n; slot.ga_w = ga_w; slot.reset(); slots.push_back(slot); } default_generation_settings_for_props = get_formated_generation(slots.front()); default_generation_settings_for_props["seed"] = -1; batch = llama_batch_init(n_ctx, 0, params.n_parallel); } std::vector tokenize(const json & json_prompt, bool add_bos) const { // TODO: currently, we tokenize using special tokens by default // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216) // but it's better compared to completely ignoring ChatML and other chat templates const bool TMP_FORCE_SPECIAL = true; // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. std::vector prompt_tokens; if (json_prompt.is_array()) { bool first = true; for (const auto& p : json_prompt) { if (p.is_string()) { auto s = p.template get(); std::vector p; if (first) { p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); first = false; } else { p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL); } prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); } else { if (first) { first = false; } prompt_tokens.push_back(p.template get()); } } } else { auto s = json_prompt.template get(); prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); } return prompt_tokens; } llama_client_slot* get_slot(int id) { int64_t t_last = ggml_time_us(); llama_client_slot *last_used = nullptr; for (llama_client_slot & slot : slots) { if (slot.id == id && slot.available()) { return &slot; } if (slot.available() && slot.t_last_used < t_last) { last_used = &slot; t_last = slot.t_last_used; } } return last_used; } bool launch_slot_with_data(llama_client_slot* &slot, json data) { slot_params default_params; llama_sampling_params default_sparams; slot->params.stream = json_value(data, "stream", false); slot->params.cache_prompt = json_value(data, "cache_prompt", false); slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent); slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); slot->params.seed = json_value(data, "seed", default_params.seed); slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) { // Might be better to reject the request with a 400 ? LOG_WARNING("Max tokens to predict exceeds server configuration", { {"params.n_predict", slot->params.n_predict}, {"slot.n_predict", slot->n_predict}, }); slot->params.n_predict = slot->n_predict; } // infill if (data.count("input_prefix") != 0) { slot->params.input_prefix = data["input_prefix"]; } else { slot->params.input_prefix = ""; } if (data.count("input_suffix") != 0) { slot->params.input_suffix = data["input_suffix"]; } else { slot->params.input_suffix = ""; } if (data.count("prompt") != 0) { slot->prompt = data["prompt"]; } else { slot->prompt = ""; } slot->sparams.penalty_prompt_tokens.clear(); slot->sparams.use_penalty_prompt_tokens = false; const auto &penalty_prompt = data.find("penalty_prompt"); if (penalty_prompt != data.end()) { if (penalty_prompt->is_string()) { const auto penalty_prompt_string = penalty_prompt->get(); auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false); slot->sparams.penalty_prompt_tokens.swap(penalty_tokens); if (slot->params.n_predict > 0) { slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict); } slot->sparams.use_penalty_prompt_tokens = true; } else if (penalty_prompt->is_array()) { const auto n_tokens = penalty_prompt->size(); slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict)); const int n_vocab = llama_n_vocab(model); for (const auto &penalty_token : *penalty_prompt) { if (penalty_token.is_number_integer()) { const auto tok = penalty_token.get(); if (tok >= 0 && tok < n_vocab) { slot->sparams.penalty_prompt_tokens.push_back(tok); } } } slot->sparams.use_penalty_prompt_tokens = true; } } slot->sparams.logit_bias.clear(); if (json_value(data, "ignore_eos", false)) { slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY; } const auto &logit_bias = data.find("logit_bias"); if (logit_bias != data.end() && logit_bias->is_array()) { const int n_vocab = llama_n_vocab(model); for (const auto &el : *logit_bias) { if (el.is_array() && el.size() == 2) { float bias; if (el[1].is_number()) { bias = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { bias = -INFINITY; } else { continue; } if (el[0].is_number_integer()) { llama_token tok = el[0].get(); if (tok >= 0 && tok < n_vocab) { slot->sparams.logit_bias[tok] = bias; } } else if (el[0].is_string()) { auto toks = llama_tokenize(model, el[0].get(), false); for (auto tok : toks) { slot->sparams.logit_bias[tok] = bias; } } } } } slot->params.antiprompt.clear(); const auto &stop = data.find("stop"); if (stop != data.end() && stop->is_array()) { for (const auto &word : *stop) { if (!word.empty()) { slot->params.antiprompt.push_back(word); } } } const auto &samplers_sequence = data.find("samplers"); if (samplers_sequence != data.end() && samplers_sequence->is_array()) { std::vector sampler_names; for (const auto &sampler_name : *samplers_sequence) { if (sampler_name.is_string()) { sampler_names.emplace_back(sampler_name); } } slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false); } else { slot->sparams.samplers_sequence = default_sparams.samplers_sequence; } if (multimodal) { const auto &images_data = data.find("image_data"); if (images_data != data.end() && images_data->is_array()) { for (const auto &img : *images_data) { const std::vector image_buffer = base64_decode(img["data"].get()); slot_image img_sl; img_sl.id = img.count("id") != 0 ? img["id"].get() : slot->images.size(); img_sl.img_data = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data)) { LOG_ERROR("failed to load image", { {"slot_id", slot->id}, {"img_sl_id", img_sl.id} }); return false; } LOG_VERBOSE("image loaded", { {"slot_id", slot->id}, {"img_sl_id", img_sl.id} }); img_sl.request_encode_image = true; slot->images.push_back(img_sl); } // process prompt // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]} if (slot->images.size() > 0 && !slot->prompt.is_array()) { std::string prompt = slot->prompt.get(); size_t pos = 0, begin_prefix = 0; std::string pattern = "[img-"; while ((pos = prompt.find(pattern, pos)) != std::string::npos) { size_t end_prefix = pos; pos += pattern.length(); size_t end_pos = prompt.find(']', pos); if (end_pos != std::string::npos) { std::string image_id = prompt.substr(pos, end_pos - pos); try { int img_id = std::stoi(image_id); bool found = false; for (slot_image &img : slot->images) { if (img.id == img_id) { found = true; img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix); begin_prefix = end_pos + 1; break; } } if (!found) { LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id); slot->images.clear(); return false; } } catch (const std::invalid_argument& e) { LOG_TEE("Invalid image number id in prompt\n"); slot->images.clear(); return false; } } } slot->prompt = ""; slot->params.input_suffix = prompt.substr(begin_prefix); slot->params.cache_prompt = false; // multimodal doesn't support cache prompt } } } if (slot->ctx_sampling != nullptr) { llama_sampling_free(slot->ctx_sampling); } slot->ctx_sampling = llama_sampling_init(slot->sparams); llama_set_rng_seed(ctx, slot->params.seed); slot->command = LOAD_PROMPT; all_slots_are_idle = false; LOG_INFO("slot is processing task", { {"slot_id", slot->id}, {"task_id", slot->task_id}, }); return true; } void kv_cache_clear() { // clear the entire KV cache llama_kv_cache_clear(ctx); clean_kv_cache = false; } void update_system_prompt() { kv_cache_clear(); system_tokens.clear(); if (!system_prompt.empty()) { system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token); llama_batch_clear(batch); for (int i = 0; i < (int)system_tokens.size(); ++i) { llama_batch_add(batch, system_tokens[i], i, { 0 }, false); } for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) { const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; if (llama_decode(ctx, batch_view) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return; } } // assign the system KV cache to all parallel sequences for (int32_t i = 1; i < params.n_parallel; ++i) { llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size()); } } LOG_TEE("system prompt updated\n"); system_need_update = false; } void notify_system_prompt_changed() { // release all slots for (llama_client_slot &slot : slots) { slot.release(); } system_need_update = true; } void process_system_prompt_data(const json &sys_props) { system_prompt = sys_props.value("prompt", ""); name_user = sys_props.value("anti_prompt", ""); name_assistant = sys_props.value("assistant_name", ""); notify_system_prompt_changed(); } static size_t find_stopping_strings(const std::string &text, const size_t last_token_size, const stop_type type, llama_client_slot &slot) { size_t stop_pos = std::string::npos; for (const std::string &word : slot.params.antiprompt) { size_t pos; if (type == STOP_FULL) { const size_t tmp = word.size() + last_token_size; const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; pos = text.find(word, from_pos); } else { pos = find_partial_stop_string(word, text); } if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { if (type == STOP_FULL) { slot.stopped_word = true; slot.stopping_word = word; slot.has_next_token = false; } stop_pos = pos; } } return stop_pos; } bool process_token(completion_token_output &result, llama_client_slot &slot) { // remember which tokens were sampled - used for repetition penalties during sampling const std::string token_str = llama_token_to_piece(ctx, result.tok); slot.sampled = result.tok; // search stop word and delete it slot.generated_text += token_str; slot.has_next_token = true; if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) { // we can change penalty_prompt_tokens because it is always created from scratch each request slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok); } // check if there is incomplete UTF-8 character at the end bool incomplete = false; for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) { unsigned char c = slot.generated_text[slot.generated_text.size() - i]; if ((c & 0xC0) == 0x80) { // continuation byte: 10xxxxxx continue; } if ((c & 0xE0) == 0xC0) { // 2-byte character: 110xxxxx ... incomplete = i < 2; } else if ((c & 0xF0) == 0xE0) { // 3-byte character: 1110xxxx ... incomplete = i < 3; } else if ((c & 0xF8) == 0xF0) { // 4-byte character: 11110xxx ... incomplete = i < 4; } // else 1-byte character or invalid byte break; } if (!incomplete) { size_t pos = std::min(slot.sent_count, slot.generated_text.size()); const std::string str_test = slot.generated_text.substr(pos); bool is_stop_full = false; size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot); if (stop_pos != std::string::npos) { is_stop_full = true; slot.generated_text.erase( slot.generated_text.begin() + pos + stop_pos, slot.generated_text.end()); pos = std::min(slot.sent_count, slot.generated_text.size()); } else { is_stop_full = false; stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot); } // check if there is any token to predict if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) { // no send the stop word in the response result.text_to_send = slot.generated_text.substr(pos, std::string::npos); slot.sent_count += result.text_to_send.size(); // add the token to slot queue and cache } slot.add_token_string(result); if (slot.params.stream) { send_partial_response(slot, result); } } if (incomplete) { slot.has_next_token = true; } // check the limits if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) { slot.stopped_limit = true; slot.has_next_token = false; } if (result.tok == llama_token_eos(model)) { slot.stopped_eos = true; slot.has_next_token = false; LOG_VERBOSE("eos token found", {}); } LOG_VERBOSE("next token", { {"token", result.tok}, {"token_text", tokens_to_output_formatted_string(ctx, result.tok)}, {"has_next_token", slot.has_next_token}, {"n_remain", slot.n_remaining}, {"num_tokens_predicted", slot.n_decoded}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, }); return slot.has_next_token; // continue } bool process_images(llama_client_slot &slot) const { for (slot_image &img : slot.images) { if (!img.request_encode_image) { continue; } if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) { LOG_TEE("Error processing the given image"); return false; } img.request_encode_image = false; } return slot.images.size() > 0; } void send_error(task_server& task, const std::string &error) { LOG_TEE("task %i - error: %s\n", task.id, error.c_str()); task_result res; res.id = task.id; res.multitask_id = task.multitask_id; res.stop = false; res.error = true; res.result_json = { { "content", error } }; queue_results.send(res); } json get_formated_generation(llama_client_slot &slot) { const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model)); const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second); std::vector samplers_sequence; for (const auto &sampler_type : slot.sparams.samplers_sequence) { samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type)); } return json { {"n_ctx", slot.n_ctx}, {"n_predict", slot.n_predict}, {"model", params.model_alias}, {"seed", slot.params.seed}, {"temperature", slot.sparams.temp}, {"dynatemp_range", slot.sparams.dynatemp_range}, {"dynatemp_exponent", slot.sparams.dynatemp_exponent}, {"top_k", slot.sparams.top_k}, {"top_p", slot.sparams.top_p}, {"min_p", slot.sparams.min_p}, {"tfs_z", slot.sparams.tfs_z}, {"typical_p", slot.sparams.typical_p}, {"repeat_last_n", slot.sparams.penalty_last_n}, {"repeat_penalty", slot.sparams.penalty_repeat}, {"presence_penalty", slot.sparams.penalty_present}, {"frequency_penalty", slot.sparams.penalty_freq}, {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens}, {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens}, {"mirostat", slot.sparams.mirostat}, {"mirostat_tau", slot.sparams.mirostat_tau}, {"mirostat_eta", slot.sparams.mirostat_eta}, {"penalize_nl", slot.sparams.penalize_nl}, {"stop", slot.params.antiprompt}, {"n_predict", slot.params.n_predict}, {"n_keep", params.n_keep}, {"ignore_eos", ignore_eos}, {"stream", slot.params.stream}, {"logit_bias", slot.sparams.logit_bias}, {"n_probs", slot.sparams.n_probs}, {"min_keep", slot.sparams.min_keep}, {"grammar", slot.sparams.grammar}, {"samplers", samplers_sequence} }; } void send_partial_response(llama_client_slot &slot, completion_token_output tkn) { task_result res; res.id = slot.task_id; res.multitask_id = slot.multitask_id; res.error = false; res.stop = false; res.result_json = json { {"content", tkn.text_to_send}, {"stop", false}, {"slot_id", slot.id}, {"multimodal", multimodal} }; if (slot.sparams.n_probs > 0) { std::vector probs_output = {}; const std::vector to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false); size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size()); size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size()); if (probs_pos < probs_stop_pos) { probs_output = std::vector(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos); } slot.sent_token_probs_index = probs_stop_pos; res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); } if (slot.oaicompat) { res.result_json["oaicompat_token_ctr"] = slot.n_decoded; res.result_json["model"] = slot.oaicompat_model; } queue_results.send(res); } void send_final_response(llama_client_slot &slot) { task_result res; res.id = slot.task_id; res.multitask_id = slot.multitask_id; res.error = false; res.stop = true; res.result_json = json { {"content", !slot.params.stream ? slot.generated_text : ""}, {"slot_id", slot.id}, {"stop", true}, {"model", params.model_alias}, {"tokens_predicted", slot.n_decoded}, {"tokens_evaluated", slot.num_prompt_tokens}, {"generation_settings", get_formated_generation(slot)}, {"prompt", slot.prompt}, {"truncated", slot.truncated}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, {"tokens_cached", slot.n_past}, {"timings", slot.get_formated_timings()} }; if (slot.sparams.n_probs > 0) { std::vector probs = {}; if (!slot.params.stream && slot.stopped_word) { const std::vector stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false); probs = std::vector(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size()); } else { probs = std::vector( slot.generated_token_probs.begin(), slot.generated_token_probs.end()); } res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs); } if (slot.oaicompat) { res.result_json["oaicompat_token_ctr"] = slot.n_decoded; res.result_json["model"] = slot.oaicompat_model; } queue_results.send(res); } void send_embedding(llama_client_slot &slot) { task_result res; res.id = slot.task_id; res.multitask_id = slot.multitask_id; res.error = false; res.stop = true; const int n_embd = llama_n_embd(model); if (!params.embedding) { LOG_WARNING("embedding disabled", { {"params.embedding", params.embedding}, }); res.result_json = json { {"embedding", std::vector(n_embd, 0.0f)}, }; } else { const float *data = llama_get_embeddings(ctx); std::vector embedding(data, data + n_embd); res.result_json = json { {"embedding", embedding }, }; } queue_results.send(res); } void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id) { task_server task; task.id = task_id; task.target_id = 0; task.data = std::move(data); task.infill_mode = infill; task.embedding_mode = embedding; task.type = TASK_TYPE_COMPLETION; task.multitask_id = multitask_id; // when a completion task's prompt array is not a singleton, we split it into multiple requests // otherwise, it's a single-prompt task, we actually queue it // if there's numbers in the prompt array it will be treated as an array of tokens if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) { bool numbers = false; for (const auto& e : task.data.at("prompt")) { if (e.is_number()) { numbers = true; break; } } // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers, // it will completely stall the server. I don't know where the bug for this is. // // if there are numbers, it needs to be treated like a single prompt, // queue_tasks handles a mix of strings and numbers just fine. if (numbers) { queue_tasks.post(task); } else { split_multiprompt_task(task_id, task); } } else { queue_tasks.post(task); } } // for multiple images processing bool ingest_images(llama_client_slot &slot, int n_batch) { int image_idx = 0; while (image_idx < (int) slot.images.size()) { slot_image &img = slot.images[image_idx]; // process prefix prompt for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; if (llama_decode(ctx, batch_view)) { LOG_TEE("%s : failed to eval\n", __func__); return false; } } // process image with llm for (int i = 0; i < img.image_tokens; i += n_batch) { int n_eval = img.image_tokens - i; if (n_eval > n_batch) { n_eval = n_batch; } const int n_embd = llama_n_embd(model); llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, }; if (llama_decode(ctx, batch_img)) { LOG_TEE("%s : failed to eval image\n", __func__); return false; } slot.n_past += n_eval; } image_idx++; llama_batch_clear(batch); // append prefix of next image const auto json_prompt = (image_idx >= (int) slot.images.size()) ? slot.params.input_suffix : // no more images, then process suffix prompt (json)(slot.images[image_idx].prefix_prompt); std::vector append_tokens = tokenize(json_prompt, false); // has next image for (int i = 0; i < (int) append_tokens.size(); ++i) { llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true); slot.n_past += 1; } } return true; } void request_cancel(int task_id) { task_server task; task.type = TASK_TYPE_CANCEL; task.target_id = task_id; queue_tasks.post(task); } void split_multiprompt_task(int multitask_id, task_server& multiprompt_task) { int prompt_count = multiprompt_task.data.at("prompt").size(); if (prompt_count <= 1) { send_error(multiprompt_task, "error while handling multiple prompts"); return; } // generate all the ID for subtask std::vector subtask_ids(prompt_count); for (int i = 0; i < prompt_count; i++) { subtask_ids[i] = queue_tasks.get_new_id(); } // queue up the multitask so we can track its subtask progression queue_tasks.add_multitask(multitask_id, subtask_ids); // add subtasks for (int i = 0; i < prompt_count; i++) { json subtask_data = multiprompt_task.data; subtask_data["prompt"] = subtask_data["prompt"][i]; // subtasks inherit everything else (infill mode, embedding mode, etc.) request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id); } } void process_single_task(task_server& task) { switch (task.type) { case TASK_TYPE_COMPLETION: { llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1)); if (slot == nullptr) { // if no slot is available, we defer this task for processing later LOG_VERBOSE("no slot is available", {{"task_id", task.id}}); queue_tasks.defer(task); break; } if (task.data.contains("system_prompt")) { if (!all_slots_are_idle) { send_error(task, "system prompt can only be updated when all slots are idle"); break; } process_system_prompt_data(task.data["system_prompt"]); // reset cache_tokens for all slots for (llama_client_slot &slot : slots) { slot.cache_tokens.clear(); slot.n_past = 0; slot.n_past_se = 0; } } slot->reset(); slot->infill = task.infill_mode; slot->embedding = task.embedding_mode; slot->task_id = task.id; slot->multitask_id = task.multitask_id; if (!launch_slot_with_data(slot, task.data)) { // send error result send_error(task, "internal_error"); break; } } break; case TASK_TYPE_CANCEL: { // release slot linked with the task id for (auto & slot : slots) { if (slot.task_id == task.target_id) { slot.release(); break; } } } break; case TASK_TYPE_NEXT_RESPONSE: { // do nothing } break; } } void on_finish_multitask(task_multi& multitask) { // all subtasks done == multitask is done task_result result; result.id = multitask.id; result.stop = true; result.error = false; // collect json results into one json result std::vector result_jsons; for (auto& subres : multitask.results) { result_jsons.push_back(subres.result_json); result.error = result.error && subres.error; } result.result_json = json{ { "results", result_jsons } }; queue_results.send(result); } bool update_slots() { if (system_need_update) { LOG_INFO("updating system prompt", {}); update_system_prompt(); } llama_batch_clear(batch); if (all_slots_are_idle) { if (system_prompt.empty() && clean_kv_cache) { LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {}); kv_cache_clear(); } return true; } LOG_VERBOSE("posting NEXT_RESPONSE", {}); task_server task; task.type = TASK_TYPE_NEXT_RESPONSE; task.target_id = -1; queue_tasks.post(task); for (llama_client_slot &slot : slots) { if (slot.ga_n == 1) { if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx) { // START LOCALAI changes // Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969) // See: https://github.com/mudler/LocalAI/issues/1333 // Context is exhausted, release the slot slot.release(); send_final_response(slot); slot.cache_tokens.clear(); slot.n_past = 0; slot.truncated = false; slot.has_next_token = true; LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size()); continue; // END LOCALAI changes } } } // decode any currently ongoing sequences LOG_VERBOSE("decoding ongoing sequences", {}); for (auto & slot : slots) { // release the slot if (slot.command == RELEASE) { slot.state = IDLE; slot.command = NONE; slot.t_last_used = ggml_time_us(); LOG_INFO("slot released", { {"slot_id", slot.id}, {"task_id", slot.task_id}, {"n_ctx", n_ctx}, {"n_past", slot.n_past}, {"n_system_tokens", system_tokens.size()}, {"n_cache_tokens", slot.cache_tokens.size()}, {"truncated", slot.truncated} }); queue_tasks.notify_slot_changed(); continue; } if (slot.state == IDLE) { continue; } slot.i_batch = batch.n_tokens; const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; // TODO: we always have to take into account the "system_tokens" // this is not great and needs to be improved somehow llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true); slot.n_past += 1; } // process in chunks of params.n_batch int32_t n_batch = params.n_batch; // assign workload to the slots if (params.cont_batching || batch.n_tokens == 0) { for (auto & slot : slots) { const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get().empty()) || !slot.images.empty(); // empty prompt passed -> release the slot and send empty response // note: infill mode allows empty prompt if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill) { slot.release(); slot.print_timings(); send_final_response(slot); continue; } // need process the prompt if (slot.state == IDLE && slot.command == LOAD_PROMPT) { slot.state = PROCESSING; slot.command = NONE; std::vector prompt_tokens; slot.t_start_process_prompt = ggml_time_us(); slot.t_start_genereration = 0; if (slot.infill) { bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); suff_rm_leading_spc = false; } auto prefix_tokens = tokenize(slot.params.input_prefix, false); auto suffix_tokens = tokenize(slot.params.input_suffix, false); const int space_token = 29871; // TODO: this should not be hardcoded if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) { suffix_tokens.erase(suffix_tokens.begin()); } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); prefix_tokens.push_back(llama_token_middle(model)); prompt_tokens = prefix_tokens; } else { prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt } slot.num_prompt_tokens = prompt_tokens.size(); if (slot.params.n_keep < 0) { slot.params.n_keep = slot.num_prompt_tokens; } slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); // if input prompt is too big, truncate it if (slot.num_prompt_tokens >= slot.n_ctx) { const int n_left = slot.n_ctx - slot.params.n_keep; const int n_block_size = n_left / 2; const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); LOG_VERBOSE("input truncated", { {"n_ctx", slot.n_ctx}, {"n_keep", slot.params.n_keep}, {"n_left", n_left}, {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, }); slot.truncated = true; prompt_tokens = new_tokens; slot.num_prompt_tokens = prompt_tokens.size(); GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx); } if (!slot.params.cache_prompt) { llama_sampling_reset(slot.ctx_sampling); slot.n_past = 0; slot.n_past_se = 0; slot.ga_i = 0; slot.num_prompt_tokens_processed = slot.num_prompt_tokens; } else { // push the prompt into the sampling context (do not apply grammar) for (auto &token : prompt_tokens) { llama_sampling_accept(slot.ctx_sampling, ctx, token, false); } slot.n_past = common_part(slot.cache_tokens, prompt_tokens); // the last token of the cache is not in the KV cache until the next call to llama_decode // (it was sampled, pushed into the "cache_tokens", but not yet put in the context) if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size()) { slot.n_past -= 1; } slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past; if (slot.ga_n != 1) { int ga_i = 0; int32_t ga_n = slot.ga_n; int32_t ga_w = slot.ga_w; int32_t slot_npast = 0; for (int k = 0; k < slot.n_past; ++k) { while (slot_npast >= ga_i + ga_w) { const int bd = (ga_w/ga_n)*(ga_n - 1); slot_npast -= bd; ga_i += ga_w/ga_n; } slot_npast++; } slot.n_past_se = slot_npast; slot.ga_i = ga_i; } LOG_INFO("slot progression", { { "slot_id", slot.id }, { "task_id", slot.task_id }, { "n_past", slot.n_past }, { "num_prompt_tokens_processed", slot.num_prompt_tokens_processed } }); } slot.cache_tokens = prompt_tokens; if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0) { // we have to evaluate at least 1 token to generate logits. LOG_INFO("we have to evaluate at least 1 token to generate logits", { { "slot_id", slot.id }, { "task_id", slot.task_id } }); slot.n_past--; if (slot.ga_i > 0) { slot.n_past_se--; } } int p0 = (int) system_tokens.size() + slot.n_past; LOG_INFO("kv cache rm [p0, end)", { { "slot_id", slot.id }, { "task_id", slot.task_id }, { "p0", p0 } }); llama_kv_cache_seq_rm(ctx, slot.id, p0, -1); LOG_VERBOSE("prompt ingested", { {"n_past", slot.n_past}, {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)}, {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())}, }); const bool has_images = process_images(slot); // process the prefix of first image std::vector prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens; int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; int32_t ga_i = slot.ga_i; int32_t ga_n = slot.ga_n; int32_t ga_w = slot.ga_w; for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past) { if (slot.ga_n != 1) { while (slot_npast >= ga_i + ga_w) { const int bd = (ga_w/ga_n)*(ga_n - 1); slot_npast -= bd; ga_i += ga_w/ga_n; } } llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false); slot_npast++; } if (has_images && !ingest_images(slot, n_batch)) { LOG_ERROR("failed processing images", { "slot_id", slot.id, "task_id", slot.task_id, }); // FIXME @phymbert: to be properly tested // early returning without changing the slot state will block the slot for ever // no one at the moment is checking the return value return false; } // extract the logits only for the last token if (batch.n_tokens > 0) { batch.logits[batch.n_tokens - 1] = true; } slot.n_decoded = 0; slot.i_batch = batch.n_tokens - 1; } } } if (batch.n_tokens == 0) { all_slots_are_idle = true; return true; } for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); for (auto & slot : slots) { if (slot.ga_n != 1) { // context extension via Self-Extend while (slot.n_past_se >= slot.ga_i + slot.ga_w) { const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w; const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1); const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w; LOG_TEE("\n"); LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd); LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n); LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd); llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd); llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n); llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd); slot.n_past_se -= bd; slot.ga_i += slot.ga_w / slot.ga_n; LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i); } slot.n_past_se += n_tokens; } } llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { if (n_batch == 1 || ret < 0) { // if you get here, it means the KV cache is full - try increasing it via the context size LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); return false; } LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2); // retry with half the batch size to try to find a free slot in the KV cache n_batch /= 2; i -= n_batch; continue; } for (auto & slot : slots) { if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { continue; } // prompt evaluated for embedding if (slot.embedding) { send_embedding(slot); slot.release(); slot.i_batch = -1; continue; } completion_token_output result; const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i); llama_sampling_accept(slot.ctx_sampling, ctx, id, true); slot.n_decoded += 1; if (slot.n_decoded == 1) { slot.t_start_genereration = ggml_time_us(); slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3; metrics.on_prompt_eval(slot); } llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false }; result.tok = id; const int32_t n_probs = slot.sparams.n_probs; if (slot.sparams.temp <= 0 && n_probs > 0) { // for llama_sample_token_greedy we need to sort candidates llama_sample_softmax(ctx, &cur_p); } for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i) { result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p}); } if (!process_token(result, slot)) { slot.release(); slot.print_timings(); send_final_response(slot); metrics.on_prediction(slot); } slot.i_batch = -1; } } LOG_VERBOSE("slots updated", {}); return true; } void run_on_all_tasks_finished() { update_slots(); } }; /* llama.cpp completion api semantics */ static json format_partial_response( llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector &probs ) { json res = json { {"content", content }, {"stop", false}, {"slot_id", slot->id }, {"multimodal", llama.multimodal } }; if (slot->sparams.n_probs > 0) { res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); } return res; } struct token_translator { llama_context * ctx; std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); } std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); } }; static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot) { auto & gtps = slot->generated_token_probs; auto translator = token_translator{llama.ctx}; auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); }; const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen); if (slot->generated_text.capacity() < slot->generated_text.size() + len) { slot->generated_text.reserve(slot->generated_text.size() + len); } for (const completion_token_output & cto : gtps) { slot->generated_text += translator(cto); } } std::function shutdown_handler; inline void signal_handler(int signal) { shutdown_handler(signal); } ///////////////////////////////// //////////////////////////////// //////// LOCALAI code starts below here ///////////////////////////////// //////////////////////////////// bool loaded_model; // TODO: add a mutex for this, but happens only once loading the model // The class has a llama instance that is shared across all RPCs llama_server_context llama; static void start_llama_server() { // Wait for model to be loaded first while (!loaded_model) { std::this_thread::sleep_for(std::chrono::milliseconds(100)); } llama.queue_tasks.on_new_task(std::bind( &llama_server_context::process_single_task, &llama, std::placeholders::_1)); llama.queue_tasks.on_finish_multitask(std::bind( &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1)); llama.queue_tasks.on_all_tasks_finished(std::bind( &llama_server_context::run_on_all_tasks_finished, &llama)); llama.queue_results.on_multitask_update(std::bind( &llama_server_queue::update_multitask, &llama.queue_tasks, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3 )); llama.queue_tasks.start_loop(); } json parse_options(bool streaming, const backend::PredictOptions* predict, llama_server_context &llama) { // This is for example a slot data from the json data // slot->params.stream = json_value(data, "stream", false); // slot->params.cache_prompt = json_value(data, "cache_prompt", false); // slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); // slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); // slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); // slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); // slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); // slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); // slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); // slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); // slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); // slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); // slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); // slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); // slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); // slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); // slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); // slot->params.seed = json_value(data, "seed", default_params.seed); // slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); // slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); // Create now a json data from the prediction options instead // json data; data["stream"] = streaming; data["cache_prompt"] = predict->promptcacheall(); data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens(); data["top_k"] = predict->topk(); data["top_p"] = predict->topp(); data["tfs_z"] = predict->tailfreesamplingz(); data["typical_p"] = predict->typicalp(); data["temperature"] = predict->temperature(); data["repeat_last_n"] = predict->repeat(); data["repeat_penalty"] = predict->penalty(); data["frequency_penalty"] = predict->frequencypenalty(); data["presence_penalty"] = predict->presencepenalty(); data["mirostat"] = predict->mirostat(); data["mirostat_tau"] = predict->mirostattau(); data["mirostat_eta"] = predict->mirostateta(); data["penalize_nl"] = predict->penalizenl(); data["n_keep"] = predict->nkeep(); data["seed"] = predict->seed(); data["grammar"] = predict->grammar(); data["prompt"] = predict->prompt(); data["ignore_eos"] = predict->ignoreeos(); // for each image in the request, add the image data // for (int i = 0; i < predict->images_size(); i++) { data["image_data"].push_back(json { {"id", i}, {"data", predict->images(i)}, }); } data["stop"] = predict->stopprompts(); // data["n_probs"] = predict->nprobs(); //TODO: images, return data; } // static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama) // { // // https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L673 // gpt_params default_params; // llama.stream = streaming; // llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens(); // llama.params.sparams.top_k = predict->topk(); // llama.params.sparams.top_p = predict->topp(); // llama.params.sparams.tfs_z = predict->tailfreesamplingz(); // llama.params.sparams.typical_p = predict->typicalp(); // llama.params.sparams.penalty_last_n = predict->repeat(); // llama.params.sparams.temp = predict->temperature(); // llama.params.sparams.penalty_repeat = predict->penalty(); // llama.params.sparams.penalty_present = predict->presencepenalty(); // llama.params.sparams.penalty_freq = predict->frequencypenalty(); // llama.params.sparams.mirostat = predict->mirostat(); // llama.params.sparams.mirostat_tau = predict->mirostattau(); // llama.params.sparams.mirostat_eta = predict->mirostateta(); // llama.params.sparams.penalize_nl = predict->penalizenl(); // llama.params.n_keep = predict->nkeep(); // llama.params.seed = predict->seed(); // llama.params.sparams.grammar = predict->grammar(); // // llama.params.n_probs = predict-> // llama.params.prompt = predict->prompt(); // llama.params.sparams.logit_bias.clear(); // if (predict->ignoreeos()) // { // llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY; // } // // const auto &logit_bias = body.find("logit_bias"); // // if (logit_bias != body.end() && logit_bias->is_array()) // // { // // const int n_vocab = llama_n_vocab(llama.model); // // for (const auto &el : *logit_bias) // // { // // if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) // // { // // llama_token tok = el[0].get(); // // if (tok >= 0 && tok < n_vocab) // // { // // if (el[1].is_number()) // // { // // llama.params.logit_bias[tok] = el[1].get(); // // } // // else if (el[1].is_boolean() && !el[1].get()) // // { // // llama.params.logit_bias[tok] = -INFINITY; // // } // // } // // } // // } // // } // llama.params.antiprompt.clear(); // for (const std::string& stopPrompt : predict->stopprompts()) { // if (!stopPrompt.empty()) // { // llama.params.antiprompt.push_back(stopPrompt); // } // } // } static void params_parse(const backend::ModelOptions* request, gpt_params & params) { // this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809 params.model = request->modelfile(); if (!request->mmproj().empty()) { // get the directory of modelfile std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\")); params.mmproj = model_dir + "/"+ request->mmproj(); } // params.model_alias ?? params.model_alias = request->modelfile(); params.n_ctx = request->contextsize(); //params.memory_f16 = request->f16memory(); params.n_threads = request->threads(); params.n_gpu_layers = request->ngpulayers(); params.n_batch = request->nbatch(); // Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1 //params.n_parallel = 1; const char *env_parallel = std::getenv("LLAMACPP_PARALLEL"); if (env_parallel != NULL) { params.n_parallel = std::stoi(env_parallel); params.cont_batching = true; } else { params.n_parallel = 1; } // TODO: Add yarn if (!request->tensorsplit().empty()) { std::string arg_next = request->tensorsplit(); // split string by , and / const std::regex regex{ R"([,/]+)" }; std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; std::vector split_arg{ it, {} }; GGML_ASSERT(split_arg.size() <= llama_max_devices()); for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) { if (i_device < split_arg.size()) { params.tensor_split[i_device] = std::stof(split_arg[i_device]); } else { params.tensor_split[i_device] = 0.0f; } } } if (!request->maingpu().empty()) { params.main_gpu = std::stoi(request->maingpu()); } if (!request->loraadapter().empty() && !request->lorabase().empty()) { float scale_factor = 1.0f; if (request->lorascale() != 0.0f) { scale_factor = request->lorascale(); } // get the directory of modelfile std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\")); params.lora_adapter.push_back(std::make_tuple(model_dir + "/"+request->loraadapter(), scale_factor)); params.lora_base = model_dir + "/"+request->lorabase(); } params.use_mlock = request->mlock(); params.use_mmap = request->mmap(); params.embedding = request->embeddings(); if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } if ( request->yarnextfactor() != 0.0f ) { params.yarn_ext_factor = request->yarnextfactor(); } if ( request->yarnattnfactor() != 0.0f ) { params.yarn_attn_factor = request->yarnattnfactor(); } if ( request->yarnbetafast() != 0.0f ) { params.yarn_beta_fast = request->yarnbetafast(); } if ( request->yarnbetaslow() != 0.0f ) { params.yarn_beta_slow = request->yarnbetaslow(); } if ( request->ropefreqbase() != 0.0f ) { params.rope_freq_base = request->ropefreqbase(); } if ( request->ropefreqscale() != 0.0f ) { params.rope_freq_scale = request->ropefreqscale(); } } // GRPC Server start class BackendServiceImpl final : public backend::Backend::Service { public: grpc::Status Health(ServerContext* context, const backend::HealthMessage* request, backend::Reply* reply) { // Implement Health RPC reply->set_message("OK"); return Status::OK; } grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) { // Implement LoadModel RPC gpt_params params; params_parse(request, params); llama_backend_init(); llama_numa_init(params.numa); // load the model if (!llama.load_model(params)) { result->set_message("Failed loading model"); result->set_success(false); return Status::CANCELLED; } llama.initialize(); result->set_message("Loading succeeded"); result->set_success(true); loaded_model = true; return Status::OK; } grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter* writer) override { json data = parse_options(true, request, llama); const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, data, false, false, -1); while (true) { task_result result = llama.queue_results.recv(task_id); if (!result.error) { const std::string str = "data: " + result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", { { "to_send", str } }); backend::Reply reply; // print it std::string completion_text = result.result_json.value("content", ""); reply.set_message(completion_text); // Send the reply writer->Write(reply); if (result.stop) { break; } } else { break; } } return grpc::Status::OK; } grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) { json data = parse_options(false, request, llama); const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, data, false, false, -1); std::string completion_text; task_result result = llama.queue_results.recv(task_id); if (!result.error && result.stop) { completion_text = result.result_json.value("content", ""); reply->set_message(completion_text); } else { return grpc::Status::OK; } return grpc::Status::OK; } }; void RunServer(const std::string& server_address) { BackendServiceImpl service; ServerBuilder builder; builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); builder.RegisterService(&service); std::unique_ptr server(builder.BuildAndStart()); std::cout << "Server listening on " << server_address << std::endl; server->Wait(); } int main(int argc, char** argv) { std::string server_address("localhost:50051"); // Define long and short options struct option long_options[] = { {"addr", required_argument, nullptr, 'a'}, {nullptr, 0, nullptr, 0} }; // Parse command-line arguments int option; int option_index = 0; while ((option = getopt_long(argc, argv, "a:", long_options, &option_index)) != -1) { switch (option) { case 'a': server_address = optarg; break; default: std::cerr << "Usage: " << argv[0] << " [--addr=
] or [-a
]" << std::endl; return 1; } } // run the HTTP server in a thread - see comment below std::thread t([&]() { RunServer(server_address); return 0; }); //); start_llama_server(); std::cout << "stopping" << std::endl; t.join(); llama_backend_free(); return 0; }