LocalAI/backend/cpp/llama/grpc-server.cpp
Ettore Di Giacinto c56b6ddb1c
fix(llama.cpp): disable infinite context shifting (#1704)
Infinite context loop might as well trigger an infinite loop of context
shifting if the model hallucinates and does not stop answering.
This has the unpleasant effect that the predicion never terminates,
which is the case especially on small models which tends to hallucinate.

Workarounds https://github.com/mudler/LocalAI/issues/1333 by removing
context-shifting.

See also upstream issue: https://github.com/ggerganov/llama.cpp/issues/3969
2024-02-13 21:17:21 +01:00

2217 lines
81 KiB
C++

// llama.cpp gRPC C++ backend server
//
// Ettore Di Giacinto <mudler@localai.io> and llama.cpp authors
//
// This is a gRPC server for llama.cpp compatible with the LocalAI proto
// Note: this is a re-adaptation of the original llama.cpp example/server.cpp for HTTP (https://github.com/ggerganov/llama.cpp/tree/master/examples/server),
// but modified to work with gRPC
//
#include <iostream>
#include <memory>
#include <string>
#include <getopt.h>
#include "../llava/clip.h"
#include "stb_image.h"
#include "common.h"
#include "json.hpp"
#include "llama.h"
#include "grammar-parser.h"
#include "backend.pb.h"
#include "backend.grpc.pb.h"
#include "utils.hpp"
// include std::regex
#include <cstddef>
#include <thread>
#include <mutex>
#include <chrono>
#include <regex>
#include <condition_variable>
#include <grpcpp/ext/proto_server_reflection_plugin.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/health_check_service_interface.h>
#include <atomic>
using grpc::Server;
using grpc::ServerBuilder;
using grpc::ServerContext;
using grpc::Status;
using backend::HealthMessage;
///// LLAMA.CPP server code below
using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
};
bool server_verbose = false;
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
{
}
return i;
}
enum stop_type
{
STOP_FULL,
STOP_PARTIAL,
};
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
std::string ret;
for (; begin != end; ++begin)
{
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
{
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
json out = json::array();
for (const auto &prob : probs)
{
json probs_for_token = json::array();
for (const auto &p : prob.probs)
{
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json
{
{"tok_str", tok_str},
{"prob", p.prob},
});
}
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json{
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}
struct llama_client_slot
{
int id;
int task_id = -1;
struct slot_params params;
slot_state state = IDLE;
slot_command command = NONE;
// used to determine the slot that has been used the longest
int64_t t_last_used = -1;
// generation props
int32_t n_ctx = 0; // context size per slot
int32_t n_past = 0;
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
json prompt;
std::string generated_text;
llama_token sampled;
std::vector<llama_token> cache_tokens;
std::vector<completion_token_output> generated_token_probs;
bool infill = false;
bool embedding = false;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word;
// sampling
struct llama_sampling_params sparams;
llama_sampling_context *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
int32_t n_past_se = 0; // self-extend
// multimodal
std::vector<slot_image> images;
// stats
size_t sent_count = 0;
size_t sent_token_probs_index = 0;
int64_t t_start_process_prompt;
int64_t t_start_genereration;
double t_prompt_processing; // ms
double t_token_generation; // ms
// multitasks
int multitask_id = -1;
void reset() {
num_prompt_tokens = 0;
generated_text = "";
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
n_past = 0;
sent_count = 0;
sent_token_probs_index = 0;
infill = false;
ga_i = 0;
n_past_se = 0;
generated_token_probs.clear();
for (slot_image & img : images)
{
free(img.image_embedding);
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
}
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1)
{
return true; // limitless
}
n_remaining = -1;
if (params.n_predict != -1)
{
n_remaining = params.n_predict - n_decoded;
}
else if (global_params.n_predict != -1)
{
n_remaining = global_params.n_predict - n_decoded;
}
return n_remaining > 0; // no budget
}
bool available() const {
return state == IDLE && command == NONE;
}
bool is_processing() const {
return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
}
void add_token_string(const completion_token_output &token) {
if (command == RELEASE)
{
return;
}
cache_tokens.push_back(token.tok);
generated_token_probs.push_back(token);
}
void release() {
if (state == PROCESSING)
{
t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
command = RELEASE;
}
}
json get_formated_timings() {
return json
{
{"prompt_n", num_prompt_tokens_processed},
{"prompt_ms", t_prompt_processing},
{"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
{"predicted_n", n_decoded},
{"predicted_ms", t_token_generation},
{"predicted_per_token_ms", t_token_generation / n_decoded},
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
};
}
void print_timings() const {
LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
}
};
struct llama_server_context
{
llama_model *model = nullptr;
llama_context *ctx = nullptr;
clip_ctx *clp_ctx = nullptr;
gpt_params params;
llama_batch batch;
bool multimodal = false;
bool clean_kv_cache = true;
bool all_slots_are_idle = false;
bool add_bos_token = true;
int32_t n_ctx; // total context for all clients / slots
// system prompt
bool system_need_update = false;
std::string system_prompt;
std::vector<llama_token> system_tokens;
std::string name_user; // this should be the antiprompt
std::string name_assistant;
// slots / clients
std::vector<llama_client_slot> slots;
llama_server_queue queue_tasks;
llama_server_response queue_results;
~llama_server_context()
{
if (ctx)
{
llama_free(ctx);
ctx = nullptr;
}
if (model)
{
llama_free_model(model);
model = nullptr;
}
}
bool load_model(const gpt_params &params_)
{
params = params_;
if (!params.mmproj.empty()) {
multimodal = true;
LOG_TEE("Multi Modal Mode Enabled");
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
return false;
}
if (params.n_ctx < 2048) { // request larger context for the image embedding
params.n_ctx = 2048;
}
}
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr)
{
LOG_ERROR("unable to load model", {{"model", params.model}});
return false;
}
if (multimodal) {
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) {
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx);
llama_free_model(model);
return false;
}
}
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
void initialize() {
// create slots
all_slots_are_idle = true;
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_TEE("Available slots:\n");
for (int i = 0; i < params.n_parallel; i++)
{
llama_client_slot slot;
slot.id = i;
slot.n_ctx = n_ctx_slot;
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
}
slot.ga_i = 0;
slot.ga_n = ga_n;
slot.ga_w = ga_w;
slot.reset();
slots.push_back(slot);
}
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
// empty system prompt
system_prompt = "";
system_tokens.clear();
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
if (json_prompt.is_array())
{
bool first = true;
for (const auto& p : json_prompt)
{
if (p.is_string())
{
auto s = p.template get<std::string>();
std::vector<llama_token> p;
if (first)
{
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
else
{
if (first)
{
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
}
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
}
llama_client_slot* get_slot(int id) {
int64_t t_last = ggml_time_us();
llama_client_slot *last_used = nullptr;
for (llama_client_slot & slot : slots)
{
if (slot.id == id && slot.available())
{
return &slot;
}
if (slot.available() && slot.t_last_used < t_last)
{
last_used = &slot;
t_last = slot.t_last_used;
}
}
return last_used;
}
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
llama_sampling_params default_sparams;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
// infill
if (data.count("input_prefix") != 0)
{
slot->params.input_prefix = data["input_prefix"];
}
else
{
slot->params.input_prefix = "";
}
if (data.count("input_suffix") != 0)
{
slot->params.input_suffix = data["input_suffix"];
}
else
{
slot->params.input_suffix = "";
}
if (data.count("prompt") != 0)
{
slot->prompt = data["prompt"];
}
else
{
slot->prompt = "";
}
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
{
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array())
{
const int n_vocab = llama_n_vocab(model);
for (const auto &el : *logit_bias)
{
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
if (el[1].is_number())
{
slot->sparams.logit_bias[tok] = el[1].get<float>();
}
else if (el[1].is_boolean() && !el[1].get<bool>())
{
slot->sparams.logit_bias[tok] = -INFINITY;
}
}
}
}
}
slot->params.antiprompt.clear();
const auto &stop = data.find("stop");
if (stop != data.end() && stop->is_array())
{
for (const auto &word : *stop)
{
if (!word.empty())
{
slot->params.antiprompt.push_back(word);
}
}
}
if (multimodal)
{
const auto &images_data = data.find("image_data");
if (images_data != data.end() && images_data->is_array())
{
for (const auto &img : *images_data)
{
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
return false;
}
LOG_TEE("slot %i - loaded image\n", slot->id);
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
// process prompt
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
if (slot->images.size() > 0 && !slot->prompt.is_array())
{
std::string prompt = slot->prompt.get<std::string>();
size_t pos = 0, begin_prefix = 0;
std::string pattern = "[img-";
while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
size_t end_prefix = pos;
pos += pattern.length();
size_t end_pos = prompt.find(']', pos);
if (end_pos != std::string::npos)
{
std::string image_id = prompt.substr(pos, end_pos - pos);
try
{
int img_id = std::stoi(image_id);
bool found = false;
for (slot_image &img : slot->images)
{
if (img.id == img_id) {
found = true;
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
begin_prefix = end_pos + 1;
break;
}
}
if (!found) {
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
slot->images.clear();
return false;
}
} catch (const std::invalid_argument& e) {
LOG_TEE("Invalid image number id in prompt\n");
slot->images.clear();
return false;
}
}
}
slot->prompt = "";
slot->params.input_suffix = prompt.substr(begin_prefix);
slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
}
}
}
if (slot->ctx_sampling != nullptr)
{
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
return true;
}
void kv_cache_clear() {
// clear the entire KV cache
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
void update_system_prompt() {
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch);
kv_cache_clear();
for (int i = 0; i < (int) system_tokens.size(); ++i)
{
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
}
LOG_TEE("system prompt updated\n");
system_need_update = false;
}
void notify_system_prompt_changed() {
// release all slots
for (llama_client_slot &slot : slots)
{
slot.release();
}
system_need_update = true;
}
void process_system_prompt_data(const json &sys_props) {
system_prompt = sys_props.value("prompt", "");
name_user = sys_props.value("anti_prompt", "");
name_assistant = sys_props.value("assistant_name", "");
if (slots.size() > 0)
{
notify_system_prompt_changed();
}
}
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
const stop_type type, llama_client_slot &slot)
{
size_t stop_pos = std::string::npos;
for (const std::string &word : slot.params.antiprompt)
{
size_t pos;
if (type == STOP_FULL)
{
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
}
else
{
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos &&
(stop_pos == std::string::npos || pos < stop_pos))
{
if (type == STOP_FULL)
{
slot.stopped_word = true;
slot.stopping_word = word;
slot.has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
bool process_token(completion_token_output &result, llama_client_slot &slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = llama_token_to_piece(ctx, result.tok);
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
{
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
if ((c & 0xC0) == 0x80)
{
// continuation byte: 10xxxxxx
continue;
}
if ((c & 0xE0) == 0xC0)
{
// 2-byte character: 110xxxxx ...
incomplete = i < 2;
}
else if ((c & 0xF0) == 0xE0)
{
// 3-byte character: 1110xxxx ...
incomplete = i < 3;
}
else if ((c & 0xF8) == 0xF0)
{
// 4-byte character: 11110xxx ...
incomplete = i < 4;
}
// else 1-byte character or invalid byte
break;
}
if (!incomplete)
{
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
if (stop_pos != std::string::npos)
{
is_stop_full = true;
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.sent_count, slot.generated_text.size());
}
else
{
is_stop_full = false;
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
}
// check if there is any token to predict
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
{
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.sent_count += result.text_to_send.size();
// add the token to slot queue and cache
}
slot.add_token_string(result);
if (slot.params.stream)
{
send_partial_response(slot, result);
}
}
if (incomplete)
{
slot.has_next_token = true;
}
// check the limits
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
{
slot.stopped_limit = true;
slot.has_next_token = false;
}
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
{
slot.stopped_eos = true;
slot.has_next_token = false;
LOG_VERBOSE("eos token found", {});
}
LOG_VERBOSE("next token", {
{"token", result.tok},
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"num_tokens_predicted", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
});
return slot.has_next_token; // continue
}
bool process_images(llama_client_slot &slot) const
{
for (slot_image &img : slot.images)
{
if (!img.request_encode_image)
{
continue;
}
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
return false;
}
img.image_tokens = clip_n_patches(clp_ctx);
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
if (!img.image_embedding)
{
LOG_TEE("Unable to allocate memory for image embeddings\n");
clip_free(clp_ctx);
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
return false;
}
clip_image_f32_free(img_res);
img.request_encode_image = false;
}
return slot.images.size() > 0;
}
void send_error(task_server& task, const std::string &error)
{
LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
res.stop = false;
res.error = true;
res.result_json = { { "content", error } };
queue_results.send(res);
}
json get_model_props()
{
return get_formated_generation(slots[0]);
}
json get_formated_generation(llama_client_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
return json {
{"n_ctx", slot.n_ctx},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temperature", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
{"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict},
{"n_keep", params.n_keep},
{"ignore_eos", ignore_eos},
{"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"grammar", slot.sparams.grammar},
};
}
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
{
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = false;
res.result_json = json
{
{"content", tkn.text_to_send},
{"stop", false},
{"slot_id", slot.id},
{"multimodal", multimodal}
};
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
{
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
}
slot.sent_token_probs_index = probs_stop_pos;
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.send(res);
}
void send_final_response(llama_client_slot &slot)
{
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
res.result_json = json
{
{"content", !slot.params.stream ? slot.generated_text : ""},
{"slot_id", slot.id},
{"stop", true},
{"model", params.model_alias},
{"tokens_predicted", slot.n_decoded},
{"tokens_evaluated", slot.num_prompt_tokens},
{"generation_settings", get_formated_generation(slot)},
{"prompt", slot.prompt},
{"truncated", slot.truncated},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
{"tokens_cached", slot.n_past},
{"timings", slot.get_formated_timings()}
};
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs = {};
if (!slot.params.stream && slot.stopped_word)
{
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
}
else
{
probs = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.end());
}
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.send(res);
}
void send_embedding(llama_client_slot &slot)
{
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
const int n_embd = llama_n_embd(model);
if (!params.embedding)
{
LOG_WARNING("embedding disabled", {
{"params.embedding", params.embedding},
});
res.result_json = json
{
{"embedding", std::vector<float>(n_embd, 0.0f)},
};
}
else
{
const float *data = llama_get_embeddings(ctx);
std::vector<float> embedding(data, data + n_embd);
res.result_json = json
{
{"embedding", embedding },
};
}
queue_results.send(res);
}
void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
{
task_server task;
task.id = task_id;
task.target_id = 0;
task.data = std::move(data);
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = TASK_TYPE_COMPLETION;
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.count("prompt") && task.data.at("prompt").size() > 1)
{
split_multiprompt_task(task_id, task);
}
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.post(task);
}
// for multiple images processing
bool ingest_images(llama_client_slot &slot, int n_batch)
{
int image_idx = 0;
while (image_idx < (int) slot.images.size())
{
slot_image &img = slot.images[image_idx];
// process prefix prompt
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
{
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view))
{
LOG_TEE("%s : failed to eval\n", __func__);
return false;
}
}
// process image with llm
for (int i = 0; i < img.image_tokens; i += n_batch)
{
int n_eval = img.image_tokens - i;
if (n_eval > n_batch)
{
n_eval = n_batch;
}
const int n_embd = llama_n_embd(model);
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
if (llama_decode(ctx, batch_img))
{
LOG_TEE("%s : failed to eval image\n", __func__);
return false;
}
slot.n_past += n_eval;
}
image_idx++;
llama_batch_clear(batch);
// append prefix of next image
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
slot.params.input_suffix : // no more images, then process suffix prompt
(json)(slot.images[image_idx].prefix_prompt);
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i)
{
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1;
}
}
return true;
}
void request_cancel(int task_id)
{
task_server task;
task.type = TASK_TYPE_CANCEL;
task.target_id = task_id;
queue_tasks.post(task);
}
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
// generate all the ID for subtask
std::vector<int> subtask_ids(prompt_count);
for (int i = 0; i < prompt_count; i++)
{
subtask_ids[i] = queue_tasks.get_new_id();
}
// queue up the multitask so we can track its subtask progression
queue_tasks.add_multitask(multitask_id, subtask_ids);
// add subtasks
for (int i = 0; i < prompt_count; i++)
{
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data["prompt"][i];
// subtasks inherit everything else (infill mode, embedding mode, etc.)
request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
}
}
void process_single_task(task_server& task)
{
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later
LOG_VERBOSE("no slot is available", {});
queue_tasks.defer(task);
break;
}
if (task.data.contains("system_prompt"))
{
if (!all_slots_are_idle) {
send_error(task, "system prompt can only be updated when all slots are idle");
break;
}
process_system_prompt_data(task.data["system_prompt"]);
// reset cache_tokens for all slots
for (llama_client_slot &slot : slots)
{
slot.cache_tokens.clear();
slot.n_past = 0;
slot.n_past_se = 0;
}
}
slot->reset();
slot->infill = task.infill_mode;
slot->embedding = task.embedding_mode;
slot->task_id = task.id;
slot->multitask_id = task.multitask_id;
if (!launch_slot_with_data(slot, task.data))
{
// send error result
send_error(task, "internal_error");
break;
}
} break;
case TASK_TYPE_CANCEL: { // release slot linked with the task id
for (auto & slot : slots)
{
if (slot.task_id == task.target_id)
{
slot.release();
break;
}
}
} break;
case TASK_TYPE_NEXT_RESPONSE: {
// do nothing
} break;
}
}
void on_finish_multitask(task_multi& multitask)
{
// all subtasks done == multitask is done
task_result result;
result.id = multitask.id;
result.stop = true;
result.error = false;
// collect json results into one json result
std::vector<json> result_jsons;
for (auto& subres : multitask.results)
{
result_jsons.push_back(subres.result_json);
result.error = result.error && subres.error;
}
result.result_json = json{ { "results", result_jsons } };
queue_results.send(result);
}
bool update_slots() {
if (system_need_update)
{
LOG_TEE("updating system prompt\n");
update_system_prompt();
}
llama_batch_clear(batch);
if (all_slots_are_idle)
{
if (system_prompt.empty() && clean_kv_cache)
{
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
kv_cache_clear();
}
return true;
}
task_server task;
task.type = TASK_TYPE_NEXT_RESPONSE;
task.target_id = -1;
queue_tasks.post(task);
for (llama_client_slot &slot : slots)
{
if (slot.ga_n == 1)
{
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
{
// START LOCALAI changes
// Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969)
// See: https://github.com/mudler/LocalAI/issues/1333
// Context is exhausted, release the slot
slot.release();
send_final_response(slot);
slot.cache_tokens.clear();
slot.n_past = 0;
slot.truncated = false;
slot.has_next_token = true;
LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
continue;
// END LOCALAI changes
}
}
}
// decode any currently ongoing sequences
for (auto & slot : slots)
{
// release the slot
if (slot.command == RELEASE)
{
slot.state = IDLE;
slot.command = NONE;
slot.t_last_used = ggml_time_us();
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
queue_tasks.notify_slot_changed();
continue;
}
if (slot.state == IDLE)
{
continue;
}
slot.i_batch = batch.n_tokens;
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1;
}
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
// assign workload to the slots
if (params.cont_batching || batch.n_tokens == 0)
{
for (auto & slot : slots)
{
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
// empty prompt passed -> release the slot and send empty response
// note: infill mode allows empty prompt
if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
{
slot.release();
slot.print_timings();
send_final_response(slot);
continue;
}
// need process the prompt
if (slot.state == IDLE && slot.command == LOAD_PROMPT)
{
slot.state = PROCESSING;
slot.command = NONE;
std::vector<llama_token> prompt_tokens;
slot.t_start_process_prompt = ggml_time_us();
slot.t_start_genereration = 0;
if (slot.infill)
{
bool suff_rm_leading_spc = true;
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
{
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
const int space_token = 29871; // TODO: this should not be hardcoded
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
suffix_tokens.erase(suffix_tokens.begin());
}
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
prefix_tokens.push_back(llama_token_middle(model));
prompt_tokens = prefix_tokens;
}
else
{
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
}
slot.num_prompt_tokens = prompt_tokens.size();
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.num_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it
if (slot.num_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
}
if (!slot.params.cache_prompt)
{
llama_sampling_reset(slot.ctx_sampling);
slot.n_past = 0;
slot.n_past_se = 0;
slot.ga_i = 0;
slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
}
else
{
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
}
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
if (slot.ga_n != 1)
{
int ga_i = 0;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
int32_t slot_npast = 0;
for (int k = 0; k < slot.n_past; ++k)
{
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
slot_npast++;
}
slot.n_past_se = slot_npast;
slot.ga_i = ga_i;
}
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
slot.cache_tokens = prompt_tokens;
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
{
// we have to evaluate at least 1 token to generate logits.
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
slot.n_past--;
if (slot.ga_i > 0)
{
slot.n_past_se--;
}
}
LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
});
const bool has_images = process_images(slot);
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
if (slot.ga_n != 1)
{
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
}
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
{
LOG_TEE("failed processing images\n");
return false;
}
// extract the logits only for the last token
if (batch.n_tokens > 0)
{
batch.logits[batch.n_tokens - 1] = true;
}
slot.n_decoded = 0;
slot.i_batch = batch.n_tokens - 1;
}
}
}
if (batch.n_tokens == 0)
{
all_slots_are_idle = true;
return true;
}
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
{
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
for (auto & slot : slots)
{
if (slot.ga_n != 1)
{
// context extension via Self-Extend
while (slot.n_past_se >= slot.ga_i + slot.ga_w)
{
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
slot.n_past_se -= bd;
slot.ga_i += slot.ga_w / slot.ga_n;
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
}
llama_batch batch_view =
{
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0)
{
if (n_batch == 1 || ret < 0)
{
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return false;
}
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
for (auto & slot : slots)
{
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
{
continue;
}
// prompt evaluated for embedding
if (slot.embedding)
{
send_embedding(slot);
slot.release();
slot.i_batch = -1;
return true;
}
completion_token_output result;
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1)
{
slot.t_start_genereration = ggml_time_us();
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0)
{
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
}
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
}
if (!process_token(result, slot))
{
slot.release();
slot.print_timings();
send_final_response(slot);
}
slot.i_batch = -1;
}
}
return true;
}
void run_on_all_tasks_finished() {
update_slots();
}
};
/* llama.cpp completion api semantics */
static json format_partial_response(
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) {
json res = json
{
{"content", content },
{"stop", false},
{"slot_id", slot->id },
{"multimodal", llama.multimodal }
};
if (slot->sparams.n_probs > 0)
{
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
}
return res;
}
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{
return json{
{"tokens", tokens}};
}
static json format_detokenized_response(std::string content)
{
return json{
{"content", content}};
}
struct token_translator
{
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
{
auto & gtps = slot->generated_token_probs;
auto translator = token_translator{llama.ctx};
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
if (slot->generated_text.capacity() < slot->generated_text.size() + len)
{
slot->generated_text.reserve(slot->generated_text.size() + len);
}
for (const completion_token_output & cto : gtps)
{
slot->generated_text += translator(cto);
}
}
/////////////////////////////////
////////////////////////////////
//////// LOCALAI code starts below here
/////////////////////////////////
////////////////////////////////
bool loaded_model; // TODO: add a mutex for this, but happens only once loading the model
// The class has a llama instance that is shared across all RPCs
llama_server_context llama;
static void start_llama_server() {
// Wait for model to be loaded first
while (!loaded_model) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
llama.queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, &llama, std::placeholders::_1));
llama.queue_tasks.on_finish_multitask(std::bind(
&llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
llama.queue_tasks.on_all_tasks_finished(std::bind(
&llama_server_context::run_on_all_tasks_finished, &llama));
llama.queue_results.on_multitask_update(std::bind(
&llama_server_queue::update_multitask,
&llama.queue_tasks,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3
));
llama.queue_tasks.start_loop();
}
json parse_options(bool streaming, const backend::PredictOptions* predict, llama_server_context &llama)
{
// This is for example a slot data from the json data
// slot->params.stream = json_value(data, "stream", false);
// slot->params.cache_prompt = json_value(data, "cache_prompt", false);
// slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
// slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
// slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
// slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
// slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
// slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
// slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
// slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
// slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
// slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
// slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
// slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
// slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
// slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
// slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
// slot->params.seed = json_value(data, "seed", default_params.seed);
// slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
// slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
// Create now a json data from the prediction options instead
//
json data;
data["stream"] = streaming;
data["cache_prompt"] = predict->promptcacheall();
data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens();
data["top_k"] = predict->topk();
data["top_p"] = predict->topp();
data["tfs_z"] = predict->tailfreesamplingz();
data["typical_p"] = predict->typicalp();
data["temperature"] = predict->temperature();
data["repeat_last_n"] = predict->repeat();
data["repeat_penalty"] = predict->penalty();
data["frequency_penalty"] = predict->frequencypenalty();
data["presence_penalty"] = predict->presencepenalty();
data["mirostat"] = predict->mirostat();
data["mirostat_tau"] = predict->mirostattau();
data["mirostat_eta"] = predict->mirostateta();
data["penalize_nl"] = predict->penalizenl();
data["n_keep"] = predict->nkeep();
data["seed"] = predict->seed();
data["grammar"] = predict->grammar();
data["prompt"] = predict->prompt();
data["ignore_eos"] = predict->ignoreeos();
// for each image in the request, add the image data
//
for (int i = 0; i < predict->images_size(); i++) {
data["image_data"].push_back(json
{
{"id", i},
{"data", predict->images(i)},
});
}
data["stop"] = predict->stopprompts();
// data["n_probs"] = predict->nprobs();
//TODO: images,
return data;
}
// static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama)
// {
// // https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L673
// gpt_params default_params;
// llama.stream = streaming;
// llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
// llama.params.sparams.top_k = predict->topk();
// llama.params.sparams.top_p = predict->topp();
// llama.params.sparams.tfs_z = predict->tailfreesamplingz();
// llama.params.sparams.typical_p = predict->typicalp();
// llama.params.sparams.penalty_last_n = predict->repeat();
// llama.params.sparams.temp = predict->temperature();
// llama.params.sparams.penalty_repeat = predict->penalty();
// llama.params.sparams.penalty_present = predict->presencepenalty();
// llama.params.sparams.penalty_freq = predict->frequencypenalty();
// llama.params.sparams.mirostat = predict->mirostat();
// llama.params.sparams.mirostat_tau = predict->mirostattau();
// llama.params.sparams.mirostat_eta = predict->mirostateta();
// llama.params.sparams.penalize_nl = predict->penalizenl();
// llama.params.n_keep = predict->nkeep();
// llama.params.seed = predict->seed();
// llama.params.sparams.grammar = predict->grammar();
// // llama.params.n_probs = predict->
// llama.params.prompt = predict->prompt();
// llama.params.sparams.logit_bias.clear();
// if (predict->ignoreeos())
// {
// llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY;
// }
// // const auto &logit_bias = body.find("logit_bias");
// // if (logit_bias != body.end() && logit_bias->is_array())
// // {
// // const int n_vocab = llama_n_vocab(llama.model);
// // for (const auto &el : *logit_bias)
// // {
// // if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
// // {
// // llama_token tok = el[0].get<llama_token>();
// // if (tok >= 0 && tok < n_vocab)
// // {
// // if (el[1].is_number())
// // {
// // llama.params.logit_bias[tok] = el[1].get<float>();
// // }
// // else if (el[1].is_boolean() && !el[1].get<bool>())
// // {
// // llama.params.logit_bias[tok] = -INFINITY;
// // }
// // }
// // }
// // }
// // }
// llama.params.antiprompt.clear();
// for (const std::string& stopPrompt : predict->stopprompts()) {
// if (!stopPrompt.empty())
// {
// llama.params.antiprompt.push_back(stopPrompt);
// }
// }
// }
static void params_parse(const backend::ModelOptions* request,
gpt_params & params) {
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
params.model = request->modelfile();
if (!request->mmproj().empty()) {
// get the directory of modelfile
std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\"));
params.mmproj = model_dir + "/"+ request->mmproj();
}
// params.model_alias ??
params.model_alias = request->modelfile();
params.n_ctx = request->contextsize();
//params.memory_f16 = request->f16memory();
params.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch();
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
//params.n_parallel = 1;
const char *env_parallel = std::getenv("LLAMACPP_PARALLEL");
if (env_parallel != NULL) {
params.n_parallel = std::stoi(env_parallel);
params.cont_batching = true;
} else {
params.n_parallel = 1;
}
// TODO: Add yarn
if (!request->tensorsplit().empty()) {
std::string arg_next = request->tensorsplit();
// split string by , and /
const std::regex regex{ R"([,/]+)" };
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
GGML_ASSERT(split_arg.size() <= llama_max_devices());
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) {
if (i_device < split_arg.size()) {
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
}
else {
params.tensor_split[i_device] = 0.0f;
}
}
}
if (!request->maingpu().empty()) {
params.main_gpu = std::stoi(request->maingpu());
}
if (!request->loraadapter().empty() && !request->lorabase().empty()) {
float scale_factor = 1.0f;
if (request->lorascale() != 0.0f) {
scale_factor = request->lorascale();
}
// get the directory of modelfile
std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\"));
params.lora_adapter.push_back(std::make_tuple(model_dir + "/"+request->loraadapter(), scale_factor));
params.lora_base = model_dir + "/"+request->lorabase();
}
params.use_mlock = request->mlock();
params.use_mmap = request->mmap();
params.embedding = request->embeddings();
if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
if ( request->yarnextfactor() != 0.0f ) {
params.yarn_ext_factor = request->yarnextfactor();
}
if ( request->yarnattnfactor() != 0.0f ) {
params.yarn_attn_factor = request->yarnattnfactor();
}
if ( request->yarnbetafast() != 0.0f ) {
params.yarn_beta_fast = request->yarnbetafast();
}
if ( request->yarnbetaslow() != 0.0f ) {
params.yarn_beta_slow = request->yarnbetaslow();
}
if ( request->ropefreqbase() != 0.0f ) {
params.rope_freq_base = request->ropefreqbase();
}
if ( request->ropefreqscale() != 0.0f ) {
params.rope_freq_scale = request->ropefreqscale();
}
}
// GRPC Server start
class BackendServiceImpl final : public backend::Backend::Service {
public:
grpc::Status Health(ServerContext* context, const backend::HealthMessage* request, backend::Reply* reply) {
// Implement Health RPC
reply->set_message("OK");
return Status::OK;
}
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
// Implement LoadModel RPC
gpt_params params;
params_parse(request, params);
llama_backend_init(params.numa);
// load the model
if (!llama.load_model(params))
{
result->set_message("Failed loading model");
result->set_success(false);
return Status::CANCELLED;
}
llama.initialize();
result->set_message("Loading succeeded");
result->set_success(true);
loaded_model = true;
return Status::OK;
}
grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter<backend::Reply>* writer) override {
json data = parse_options(true, request, llama);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, data, false, false, -1);
while (true)
{
task_result result = llama.queue_results.recv(task_id);
if (!result.error) {
const std::string str =
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
backend::Reply reply;
// print it
std::string completion_text = result.result_json.value("content", "");
reply.set_message(completion_text);
// Send the reply
writer->Write(reply);
if (result.stop) {
break;
}
} else {
break;
}
}
return grpc::Status::OK;
}
grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) {
json data = parse_options(false, request, llama);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, data, false, false, -1);
std::string completion_text;
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop) {
completion_text = result.result_json.value("content", "");
reply->set_message(completion_text);
}
else
{
return grpc::Status::OK;
}
return grpc::Status::OK;
}
};
void RunServer(const std::string& server_address) {
BackendServiceImpl service;
ServerBuilder builder;
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
builder.RegisterService(&service);
std::unique_ptr<Server> server(builder.BuildAndStart());
std::cout << "Server listening on " << server_address << std::endl;
server->Wait();
}
int main(int argc, char** argv) {
std::string server_address("localhost:50051");
// Define long and short options
struct option long_options[] = {
{"addr", required_argument, nullptr, 'a'},
{nullptr, 0, nullptr, 0}
};
// Parse command-line arguments
int option;
int option_index = 0;
while ((option = getopt_long(argc, argv, "a:", long_options, &option_index)) != -1) {
switch (option) {
case 'a':
server_address = optarg;
break;
default:
std::cerr << "Usage: " << argv[0] << " [--addr=<address>] or [-a <address>]" << std::endl;
return 1;
}
}
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{
RunServer(server_address);
return 0;
});
//);
start_llama_server();
std::cout << "stopping" << std::endl;
t.join();
llama_backend_free();
return 0;
}