LocalAI/pkg/backend/llm/llama/llama.go
Ettore Di Giacinto 44bc7aa3d0
feat: Allow to load lora adapters for llama.cpp (#955)
**Description**

This PR fixes #

**Notes for Reviewers**


**[Signed
commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
- [ ] Yes, I signed my commits.
 

<!--
Thank you for contributing to LocalAI! 

Contributing Conventions:

1. Include descriptive PR titles with [<component-name>] prepended.
2. Build and test your changes before submitting a PR. 
3. Sign your commits

By following the community's contribution conventions upfront, the
review process will
be accelerated and your PR merged more quickly.
-->

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-25 21:58:46 +02:00

221 lines
6.0 KiB
Go

package llama
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/go-llama.cpp"
)
type LLM struct {
base.SingleThread
llama *llama.LLama
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
llamaOpts := []llama.ModelOption{
llama.WithRopeFreqBase(ropeFreqBase),
llama.WithRopeFreqScale(ropeFreqScale),
}
if opts.NoMulMatQ {
llamaOpts = append(llamaOpts, llama.SetMulMatQ(false))
}
if opts.LoraAdapter != "" {
llamaOpts = append(llamaOpts, llama.SetLoraAdapter(opts.LoraAdapter))
}
if opts.LoraBase != "" {
llamaOpts = append(llamaOpts, llama.SetLoraBase(opts.LoraBase))
}
if opts.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
}
if opts.F16Memory {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
if opts.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if opts.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
}
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
if opts.NBatch != 0 {
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
} else {
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
}
if opts.NUMA {
llamaOpts = append(llamaOpts, llama.EnableNUMA)
}
if opts.LowVRAM {
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
}
model, err := llama.New(opts.ModelFile, llamaOpts...)
llm.llama = model
return err
}
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
predictOptions := []llama.PredictOption{
llama.SetTemperature(opts.Temperature),
llama.SetTopP(opts.TopP),
llama.SetTopK(int(opts.TopK)),
llama.SetTokens(int(opts.Tokens)),
llama.SetThreads(int(opts.Threads)),
llama.WithGrammar(opts.Grammar),
llama.SetRopeFreqBase(ropeFreqBase),
llama.SetRopeFreqScale(ropeFreqScale),
llama.SetNegativePromptScale(opts.NegativePromptScale),
llama.SetNegativePrompt(opts.NegativePrompt),
}
if opts.PromptCacheAll {
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
}
if opts.PromptCacheRO {
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
}
// Expected absolute path
if opts.PromptCachePath != "" {
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
}
if opts.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
}
if opts.MirostatETA != 0 {
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
}
if opts.MirostatTAU != 0 {
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
}
if opts.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
if opts.PresencePenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
}
if opts.NKeep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
}
if opts.F16KV {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if opts.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if opts.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
}
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
predictOptions := buildPredictOptions(opts)
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
results <- token
return true
}))
go func() {
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
close(results)
}()
return nil
}
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
predictOptions := buildPredictOptions(opts)
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
}
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
}
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
predictOptions := buildPredictOptions(opts)
l, tokens, err := llm.llama.TokenizeString(opts.Prompt, predictOptions...)
if err != nil {
return pb.TokenizationResponse{}, err
}
return pb.TokenizationResponse{
Length: l,
Tokens: tokens,
}, nil
}