LocalAI/backend/go/stores/store.go
Richard Palethorpe 643d85d2cc
feat(stores): Vector store backend (#1795)
Add simple vector store backend

Signed-off-by: Richard Palethorpe <io@richiejp.com>
2024-03-22 21:14:04 +01:00

508 lines
12 KiB
Go

package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"container/heap"
"fmt"
"math"
"slices"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/rs/zerolog/log"
)
type Store struct {
base.SingleThread
// The sorted keys
keys [][]float32
// The sorted values
values [][]byte
// If for every K it holds that ||k||^2 = 1, then we can use the normalized distance functions
// TODO: Should we normalize incoming keys if they are not instead?
keysAreNormalized bool
// The first key decides the length of the keys
keyLen int
}
// TODO: Only used for sorting using Go's builtin implementation. The interfaces are columnar because
// that's theoretically best for memory layout and cache locality, but this isn't optimized yet.
type Pair struct {
Key []float32
Value []byte
}
func NewStore() *Store {
return &Store{
keys: make([][]float32, 0),
values: make([][]byte, 0),
keysAreNormalized: true,
keyLen: -1,
}
}
func compareSlices(k1, k2 []float32) int {
assert(len(k1) == len(k2), fmt.Sprintf("compareSlices: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
return slices.Compare(k1, k2)
}
func hasKey(unsortedSlice [][]float32, target []float32) bool {
return slices.ContainsFunc(unsortedSlice, func(k []float32) bool {
return compareSlices(k, target) == 0
})
}
func findInSortedSlice(sortedSlice [][]float32, target []float32) (int, bool) {
return slices.BinarySearchFunc(sortedSlice, target, func(k, t []float32) int {
return compareSlices(k, t)
})
}
func isSortedPairs(kvs []Pair) bool {
for i := 1; i < len(kvs); i++ {
if compareSlices(kvs[i-1].Key, kvs[i].Key) > 0 {
return false
}
}
return true
}
func isSortedKeys(keys [][]float32) bool {
for i := 1; i < len(keys); i++ {
if compareSlices(keys[i-1], keys[i]) > 0 {
return false
}
}
return true
}
func sortIntoKeySlicese(keys []*pb.StoresKey) [][]float32 {
ks := make([][]float32, len(keys))
for i, k := range keys {
ks[i] = k.Floats
}
slices.SortFunc(ks, compareSlices)
assert(len(ks) == len(keys), fmt.Sprintf("len(ks) = %d, len(keys) = %d", len(ks), len(keys)))
assert(isSortedKeys(ks), "keys are not sorted")
return ks
}
func (s *Store) Load(opts *pb.ModelOptions) error {
return nil
}
// Sort the incoming kvs and merge them with the existing sorted kvs
func (s *Store) StoresSet(opts *pb.StoresSetOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if len(opts.Keys) != len(opts.Values) {
return fmt.Errorf("len(keys) = %d, len(values) = %d", len(opts.Keys), len(opts.Values))
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
kvs := make([]Pair, len(opts.Keys))
for i, k := range opts.Keys {
if s.keysAreNormalized && !isNormalized(k.Floats) {
s.keysAreNormalized = false
var sample []float32
if len(s.keys) > 5 {
sample = k.Floats[:5]
} else {
sample = k.Floats
}
log.Debug().Msgf("Key is not normalized: %v", sample)
}
kvs[i] = Pair{
Key: k.Floats,
Value: opts.Values[i].Bytes,
}
}
slices.SortFunc(kvs, func(a, b Pair) int {
return compareSlices(a.Key, b.Key)
})
assert(len(kvs) == len(opts.Keys), fmt.Sprintf("len(kvs) = %d, len(opts.Keys) = %d", len(kvs), len(opts.Keys)))
assert(isSortedPairs(kvs), "keys are not sorted")
l := len(kvs) + len(s.keys)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
i, j := 0, 0
for {
if i+j >= l {
break
}
if i >= len(kvs) {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
continue
}
if j >= len(s.keys) {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
continue
}
c := compareSlices(kvs[i].Key, s.keys[j])
if c < 0 {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
} else if c > 0 {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
} else {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
j++
}
}
assert(len(merge_ks) == l, fmt.Sprintf("len(merge_ks) = %d, l = %d", len(merge_ks), l))
assert(isSortedKeys(merge_ks), "merge keys are not sorted")
s.keys = merge_ks
s.values = merge_vs
return nil
}
func (s *Store) StoresDelete(opts *pb.StoresDeleteOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to delete")
}
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Trying to delete key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
ks := sortIntoKeySlicese(opts.Keys)
l := len(s.keys) - len(ks)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
tail_ks := s.keys
tail_vs := s.values
for _, k := range ks {
j, found := findInSortedSlice(tail_ks, k)
if found {
merge_ks = append(merge_ks, tail_ks[:j]...)
merge_vs = append(merge_vs, tail_vs[:j]...)
tail_ks = tail_ks[j+1:]
tail_vs = tail_vs[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: t=%d, %v", len(tail_ks), k))
}
log.Debug().Msgf("Delete: found = %v, t = %d, j = %d, len(merge_ks) = %d, len(merge_vs) = %d", found, len(tail_ks), j, len(merge_ks), len(merge_vs))
}
merge_ks = append(merge_ks, tail_ks...)
merge_vs = append(merge_vs, tail_vs...)
assert(len(merge_ks) <= len(s.keys), fmt.Sprintf("len(merge_ks) = %d, len(s.keys) = %d", len(merge_ks), len(s.keys)))
s.keys = merge_ks
s.values = merge_vs
assert(len(s.keys) >= l, fmt.Sprintf("len(s.keys) = %d, l = %d", len(s.keys), l))
assert(isSortedKeys(s.keys), "keys are not sorted")
assert(func() bool {
for _, k := range ks {
if _, found := findInSortedSlice(s.keys, k); found {
return false
}
}
return true
}(), "Keys to delete still present")
if len(s.keys) != l {
log.Debug().Msgf("Delete: Some keys not found: len(s.keys) = %d, l = %d", len(s.keys), l)
}
return nil
}
func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error) {
pbKeys := make([]*pb.StoresKey, 0, len(opts.Keys))
pbValues := make([]*pb.StoresValue, 0, len(opts.Keys))
ks := sortIntoKeySlicese(opts.Keys)
if len(s.keys) == 0 {
log.Debug().Msgf("Get: No keys in store")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return pb.StoresGetResult{}, fmt.Errorf("Try to get a key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
tail_k := s.keys
tail_v := s.values
for i, k := range ks {
j, found := findInSortedSlice(tail_k, k)
if found {
pbKeys = append(pbKeys, &pb.StoresKey{
Floats: k,
})
pbValues = append(pbValues, &pb.StoresValue{
Bytes: tail_v[j],
})
tail_k = tail_k[j+1:]
tail_v = tail_v[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: i=%d, %v", i, k))
}
}
if len(pbKeys) != len(opts.Keys) {
log.Debug().Msgf("Get: Some keys not found: len(pbKeys) = %d, len(opts.Keys) = %d, len(s.Keys) = %d", len(pbKeys), len(opts.Keys), len(s.keys))
}
return pb.StoresGetResult{
Keys: pbKeys,
Values: pbValues,
}, nil
}
func isNormalized(k []float32) bool {
var sum float32
for _, v := range k {
sum += v
}
return sum == 1.0
}
// TODO: This we could replace with handwritten SIMD code
func normalizedCosineSimilarity(k1, k2 []float32) float32 {
assert(len(k1) == len(k2), fmt.Sprintf("normalizedCosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
var dot float32
for i := 0; i < len(k1); i++ {
dot += k1[i] * k2[i]
}
assert(dot >= -1 && dot <= 1, fmt.Sprintf("dot = %f", dot))
// 2.0 * (1.0 - dot) would be the Euclidean distance
return dot
}
type PriorityItem struct {
Similarity float32
Key []float32
Value []byte
}
type PriorityQueue []*PriorityItem
func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {
// Inverted because the most similar should be at the top
return pq[i].Similarity < pq[j].Similarity
}
func (pq PriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *PriorityQueue) Push(x any) {
item := x.(*PriorityItem)
*pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() any {
old := *pq
n := len(old)
item := old[n-1]
*pq = old[0 : n-1]
return item
}
func (s *Store) StoresFindNormalized(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
top_ks := make(PriorityQueue, 0, int(opts.TopK))
heap.Init(&top_ks)
for i, k := range s.keys {
sim := normalizedCosineSimilarity(tk, k)
heap.Push(&top_ks, &PriorityItem{
Similarity: sim,
Key: k,
Value: s.values[i],
})
if top_ks.Len() > int(opts.TopK) {
heap.Pop(&top_ks)
}
}
similarities := make([]float32, top_ks.Len())
pbKeys := make([]*pb.StoresKey, top_ks.Len())
pbValues := make([]*pb.StoresValue, top_ks.Len())
for i := top_ks.Len() - 1; i >= 0; i-- {
item := heap.Pop(&top_ks).(*PriorityItem)
similarities[i] = item.Similarity
pbKeys[i] = &pb.StoresKey{
Floats: item.Key,
}
pbValues[i] = &pb.StoresValue{
Bytes: item.Value,
}
}
return pb.StoresFindResult{
Keys: pbKeys,
Values: pbValues,
Similarities: similarities,
}, nil
}
func cosineSimilarity(k1, k2 []float32, mag1 float64) float32 {
assert(len(k1) == len(k2), fmt.Sprintf("cosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
var dot, mag2 float64
for i := 0; i < len(k1); i++ {
dot += float64(k1[i] * k2[i])
mag2 += float64(k2[i] * k2[i])
}
sim := float32(dot / (mag1 * math.Sqrt(mag2)))
assert(sim >= -1 && sim <= 1, fmt.Sprintf("sim = %f", sim))
return sim
}
func (s *Store) StoresFindFallback(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
top_ks := make(PriorityQueue, 0, int(opts.TopK))
heap.Init(&top_ks)
var mag1 float64
for _, v := range tk {
mag1 += float64(v * v)
}
mag1 = math.Sqrt(mag1)
for i, k := range s.keys {
dist := cosineSimilarity(tk, k, mag1)
heap.Push(&top_ks, &PriorityItem{
Similarity: dist,
Key: k,
Value: s.values[i],
})
if top_ks.Len() > int(opts.TopK) {
heap.Pop(&top_ks)
}
}
similarities := make([]float32, top_ks.Len())
pbKeys := make([]*pb.StoresKey, top_ks.Len())
pbValues := make([]*pb.StoresValue, top_ks.Len())
for i := top_ks.Len() - 1; i >= 0; i-- {
item := heap.Pop(&top_ks).(*PriorityItem)
similarities[i] = item.Similarity
pbKeys[i] = &pb.StoresKey{
Floats: item.Key,
}
pbValues[i] = &pb.StoresValue{
Bytes: item.Value,
}
}
return pb.StoresFindResult{
Keys: pbKeys,
Values: pbValues,
Similarities: similarities,
}, nil
}
func (s *Store) StoresFind(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
if len(tk) != s.keyLen {
return pb.StoresFindResult{}, fmt.Errorf("Try to find key with length %d when existing length is %d", len(tk), s.keyLen)
}
if opts.TopK < 1 {
return pb.StoresFindResult{}, fmt.Errorf("opts.TopK = %d, must be >= 1", opts.TopK)
}
if s.keyLen == -1 {
s.keyLen = len(opts.Key.Floats)
} else {
if len(opts.Key.Floats) != s.keyLen {
return pb.StoresFindResult{}, fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Key.Floats), s.keyLen)
}
}
if s.keysAreNormalized && isNormalized(tk) {
return s.StoresFindNormalized(opts)
} else {
if s.keysAreNormalized {
var sample []float32
if len(s.keys) > 5 {
sample = tk[:5]
} else {
sample = tk
}
log.Debug().Msgf("Trying to compare non-normalized key with normalized keys: %v", sample)
}
return s.StoresFindFallback(opts)
}
}