mirror of
https://github.com/mudler/LocalAI.git
synced 2024-06-07 19:40:48 +00:00
751b7eca62
Signed-off-by: mudler <mudler@mocaccino.org>
344 lines
8.2 KiB
Go
344 lines
8.2 KiB
Go
package api
|
|
|
|
import (
|
|
"fmt"
|
|
"regexp"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/donomii/go-rwkv.cpp"
|
|
model "github.com/go-skynet/LocalAI/pkg/model"
|
|
gpt2 "github.com/go-skynet/go-gpt2.cpp"
|
|
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
|
llama "github.com/go-skynet/go-llama.cpp"
|
|
"github.com/hashicorp/go-multierror"
|
|
)
|
|
|
|
const tokenizerSuffix = ".tokenizer.json"
|
|
|
|
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
var mutexMap sync.Mutex
|
|
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
|
|
|
|
var loadedModels map[string]interface{} = map[string]interface{}{}
|
|
var muModels sync.Mutex
|
|
|
|
func backendLoader(backendString string, loader *model.ModelLoader, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
|
|
switch strings.ToLower(backendString) {
|
|
case "llama":
|
|
return loader.LoadLLaMAModel(modelFile, llamaOpts...)
|
|
case "stablelm":
|
|
return loader.LoadStableLMModel(modelFile)
|
|
case "gpt2":
|
|
return loader.LoadGPT2Model(modelFile)
|
|
case "gptj":
|
|
return loader.LoadGPTJModel(modelFile)
|
|
case "rwkv":
|
|
return loader.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
|
|
default:
|
|
return nil, fmt.Errorf("backend unsupported: %s", backendString)
|
|
}
|
|
}
|
|
|
|
func greedyLoader(loader *model.ModelLoader, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
|
|
updateModels := func(model interface{}) {
|
|
muModels.Lock()
|
|
defer muModels.Unlock()
|
|
loadedModels[modelFile] = model
|
|
}
|
|
|
|
muModels.Lock()
|
|
m, exists := loadedModels[modelFile]
|
|
if exists {
|
|
muModels.Unlock()
|
|
return m, nil
|
|
}
|
|
muModels.Unlock()
|
|
|
|
model, modelerr := loader.LoadLLaMAModel(modelFile, llamaOpts...)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = loader.LoadGPTJModel(modelFile)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = loader.LoadGPT2Model(modelFile)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = loader.LoadStableLMModel(modelFile)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = loader.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
return nil, fmt.Errorf("could not load model - all backends returned error: %s", err.Error())
|
|
}
|
|
|
|
func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback func(string) bool) (func() (string, error), error) {
|
|
supportStreams := false
|
|
modelFile := c.Model
|
|
|
|
// Try to load the model
|
|
llamaOpts := []llama.ModelOption{}
|
|
if c.ContextSize != 0 {
|
|
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
|
|
}
|
|
if c.F16 {
|
|
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
|
}
|
|
|
|
var inferenceModel interface{}
|
|
var err error
|
|
if c.Backend == "" {
|
|
inferenceModel, err = greedyLoader(loader, modelFile, llamaOpts, uint32(c.Threads))
|
|
} else {
|
|
inferenceModel, err = backendLoader(c.Backend, loader, modelFile, llamaOpts, uint32(c.Threads))
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var fn func() (string, error)
|
|
|
|
switch model := inferenceModel.(type) {
|
|
case *rwkv.RwkvState:
|
|
supportStreams = true
|
|
|
|
fn = func() (string, error) {
|
|
//model.ProcessInput("You are a chatbot that is very good at chatting. blah blah blah")
|
|
stopWord := "\n"
|
|
if len(c.StopWords) > 0 {
|
|
stopWord = c.StopWords[0]
|
|
}
|
|
|
|
response := model.GenerateResponse(c.Maxtokens, stopWord, float32(c.Temperature), float32(c.TopP), tokenCallback)
|
|
|
|
return response, nil
|
|
}
|
|
case *gpt2.StableLM:
|
|
fn = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []gpt2.PredictOption{
|
|
gpt2.SetTemperature(c.Temperature),
|
|
gpt2.SetTopP(c.TopP),
|
|
gpt2.SetTopK(c.TopK),
|
|
gpt2.SetTokens(c.Maxtokens),
|
|
gpt2.SetThreads(c.Threads),
|
|
}
|
|
|
|
if c.Batch != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
|
|
}
|
|
|
|
if c.Seed != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
|
|
}
|
|
|
|
return model.Predict(
|
|
s,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
case *gpt2.GPT2:
|
|
fn = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []gpt2.PredictOption{
|
|
gpt2.SetTemperature(c.Temperature),
|
|
gpt2.SetTopP(c.TopP),
|
|
gpt2.SetTopK(c.TopK),
|
|
gpt2.SetTokens(c.Maxtokens),
|
|
gpt2.SetThreads(c.Threads),
|
|
}
|
|
|
|
if c.Batch != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
|
|
}
|
|
|
|
if c.Seed != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
|
|
}
|
|
|
|
return model.Predict(
|
|
s,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
case *gptj.GPTJ:
|
|
fn = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []gptj.PredictOption{
|
|
gptj.SetTemperature(c.Temperature),
|
|
gptj.SetTopP(c.TopP),
|
|
gptj.SetTopK(c.TopK),
|
|
gptj.SetTokens(c.Maxtokens),
|
|
gptj.SetThreads(c.Threads),
|
|
}
|
|
|
|
if c.Batch != 0 {
|
|
predictOptions = append(predictOptions, gptj.SetBatch(c.Batch))
|
|
}
|
|
|
|
if c.Seed != 0 {
|
|
predictOptions = append(predictOptions, gptj.SetSeed(c.Seed))
|
|
}
|
|
|
|
return model.Predict(
|
|
s,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
case *llama.LLama:
|
|
supportStreams = true
|
|
fn = func() (string, error) {
|
|
|
|
if tokenCallback != nil {
|
|
model.SetTokenCallback(tokenCallback)
|
|
}
|
|
|
|
// Generate the prediction using the language model
|
|
predictOptions := []llama.PredictOption{
|
|
llama.SetTemperature(c.Temperature),
|
|
llama.SetTopP(c.TopP),
|
|
llama.SetTopK(c.TopK),
|
|
llama.SetTokens(c.Maxtokens),
|
|
llama.SetThreads(c.Threads),
|
|
}
|
|
|
|
if c.Debug {
|
|
predictOptions = append(predictOptions, llama.Debug)
|
|
}
|
|
|
|
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
|
|
|
|
if c.RepeatPenalty != 0 {
|
|
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
|
|
}
|
|
|
|
if c.Keep != 0 {
|
|
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
|
|
}
|
|
|
|
if c.Batch != 0 {
|
|
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
|
|
}
|
|
|
|
if c.F16 {
|
|
predictOptions = append(predictOptions, llama.EnableF16KV)
|
|
}
|
|
|
|
if c.IgnoreEOS {
|
|
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
|
}
|
|
|
|
if c.Seed != 0 {
|
|
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
|
|
}
|
|
|
|
return model.Predict(
|
|
s,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
}
|
|
|
|
return func() (string, error) {
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
mutexMap.Lock()
|
|
l, ok := mutexes[modelFile]
|
|
if !ok {
|
|
m := &sync.Mutex{}
|
|
mutexes[modelFile] = m
|
|
l = m
|
|
}
|
|
mutexMap.Unlock()
|
|
l.Lock()
|
|
defer l.Unlock()
|
|
|
|
res, err := fn()
|
|
if tokenCallback != nil && !supportStreams {
|
|
tokenCallback(res)
|
|
}
|
|
return res, err
|
|
}, nil
|
|
}
|
|
|
|
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
|
|
result := []Choice{}
|
|
|
|
n := input.N
|
|
|
|
if input.N == 0 {
|
|
n = 1
|
|
}
|
|
|
|
// get the model function to call for the result
|
|
predFunc, err := ModelInference(predInput, loader, *config, tokenCallback)
|
|
if err != nil {
|
|
return result, err
|
|
}
|
|
|
|
for i := 0; i < n; i++ {
|
|
prediction, err := predFunc()
|
|
if err != nil {
|
|
return result, err
|
|
}
|
|
|
|
prediction = Finetune(*config, predInput, prediction)
|
|
cb(prediction, &result)
|
|
|
|
//result = append(result, Choice{Text: prediction})
|
|
|
|
}
|
|
return result, err
|
|
}
|
|
|
|
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
|
var mu sync.Mutex = sync.Mutex{}
|
|
|
|
func Finetune(config Config, input, prediction string) string {
|
|
if config.Echo {
|
|
prediction = input + prediction
|
|
}
|
|
|
|
for _, c := range config.Cutstrings {
|
|
mu.Lock()
|
|
reg, ok := cutstrings[c]
|
|
if !ok {
|
|
cutstrings[c] = regexp.MustCompile(c)
|
|
reg = cutstrings[c]
|
|
}
|
|
mu.Unlock()
|
|
prediction = reg.ReplaceAllString(prediction, "")
|
|
}
|
|
|
|
for _, c := range config.TrimSpace {
|
|
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
|
}
|
|
return prediction
|
|
|
|
}
|