LocalAI/backend/go/llm/rwkv/rwkv.go
Ettore Di Giacinto ad0e30bca5
refactor: move backends into the backends directory (#1279)
* refactor: move backends into the backends directory

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* refactor: move main close to implementation for every backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-11-13 22:40:16 +01:00

96 lines
2.2 KiB
Go

package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"path/filepath"
"github.com/donomii/go-rwkv.cpp"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
)
const tokenizerSuffix = ".tokenizer.json"
type LLM struct {
base.SingleThread
rwkv *rwkv.RwkvState
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
tokenizerFile := opts.Tokenizer
if tokenizerFile == "" {
modelFile := filepath.Base(opts.ModelFile)
tokenizerFile = modelFile + tokenizerSuffix
}
modelPath := filepath.Dir(opts.ModelFile)
tokenizerPath := filepath.Join(modelPath, tokenizerFile)
model := rwkv.LoadFiles(opts.ModelFile, tokenizerPath, uint32(opts.GetThreads()))
if model == nil {
return fmt.Errorf("could not load model")
}
llm.rwkv = model
return nil
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
stopWord := "\n"
if len(opts.StopPrompts) > 0 {
stopWord = opts.StopPrompts[0]
}
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
return "", err
}
response := llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), nil)
return response, nil
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
stopWord := "\n"
if len(opts.StopPrompts) > 0 {
stopWord = opts.StopPrompts[0]
}
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
fmt.Println("Error processing input: ", err)
return
}
llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), func(s string) bool {
results <- s
return true
})
close(results)
}()
return nil
}
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
tokens, err := llm.rwkv.Tokenizer.Encode(opts.Prompt)
if err != nil {
return pb.TokenizationResponse{}, err
}
l := len(tokens)
i32Tokens := make([]int32, l)
for i, t := range tokens {
i32Tokens[i] = int32(t.ID)
}
return pb.TokenizationResponse{
Length: int32(l),
Tokens: i32Tokens,
}, nil
}