mirror of
https://github.com/mudler/LocalAI.git
synced 2024-06-07 19:40:48 +00:00
255748bcba
This PR specifically introduces a `core` folder and moves the following packages over, without any other changes: - `api/backend` - `api/config` - `api/options` - `api/schema` Once this is merged and we confirm there's no regressions, I can migrate over the remaining changes piece by piece to split up application startup, backend services, http, and mqtt as was the goal of the earlier PRs!
592 lines
19 KiB
Go
592 lines
19 KiB
Go
package openai
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"encoding/json"
|
|
"fmt"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/go-skynet/LocalAI/core/backend"
|
|
config "github.com/go-skynet/LocalAI/core/config"
|
|
"github.com/go-skynet/LocalAI/core/options"
|
|
"github.com/go-skynet/LocalAI/core/schema"
|
|
"github.com/go-skynet/LocalAI/pkg/grammar"
|
|
model "github.com/go-skynet/LocalAI/pkg/model"
|
|
"github.com/go-skynet/LocalAI/pkg/utils"
|
|
"github.com/gofiber/fiber/v2"
|
|
"github.com/google/uuid"
|
|
"github.com/rs/zerolog/log"
|
|
"github.com/valyala/fasthttp"
|
|
)
|
|
|
|
func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
|
|
emptyMessage := ""
|
|
id := uuid.New().String()
|
|
created := int(time.Now().Unix())
|
|
|
|
process := func(s string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
|
initialMessage := schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
|
Object: "chat.completion.chunk",
|
|
}
|
|
responses <- initialMessage
|
|
|
|
ComputeChoices(req, s, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
|
resp := schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
|
|
Object: "chat.completion.chunk",
|
|
Usage: schema.OpenAIUsage{
|
|
PromptTokens: usage.Prompt,
|
|
CompletionTokens: usage.Completion,
|
|
TotalTokens: usage.Prompt + usage.Completion,
|
|
},
|
|
}
|
|
|
|
responses <- resp
|
|
return true
|
|
})
|
|
close(responses)
|
|
}
|
|
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
|
result := ""
|
|
_, tokenUsage, _ := ComputeChoices(req, prompt, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
|
result += s
|
|
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
|
// stream the result token by token here.
|
|
return true
|
|
})
|
|
|
|
results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls)
|
|
noActionToRun := len(results) > 0 && results[0].name == noAction
|
|
|
|
switch {
|
|
case noActionToRun:
|
|
initialMessage := schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
|
Object: "chat.completion.chunk",
|
|
}
|
|
responses <- initialMessage
|
|
|
|
result, err := handleQuestion(config, req, o, results[0].arguments, prompt)
|
|
if err != nil {
|
|
log.Error().Msgf("error handling question: %s", err.Error())
|
|
return
|
|
}
|
|
|
|
resp := schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
|
Object: "chat.completion.chunk",
|
|
Usage: schema.OpenAIUsage{
|
|
PromptTokens: tokenUsage.Prompt,
|
|
CompletionTokens: tokenUsage.Completion,
|
|
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
|
},
|
|
}
|
|
|
|
responses <- resp
|
|
|
|
default:
|
|
for i, ss := range results {
|
|
name, args := ss.name, ss.arguments
|
|
|
|
initialMessage := schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{{
|
|
Delta: &schema.Message{
|
|
Role: "assistant",
|
|
ToolCalls: []schema.ToolCall{
|
|
{
|
|
Index: i,
|
|
ID: id,
|
|
Type: "function",
|
|
FunctionCall: schema.FunctionCall{
|
|
Name: name,
|
|
},
|
|
},
|
|
},
|
|
}}},
|
|
Object: "chat.completion.chunk",
|
|
}
|
|
responses <- initialMessage
|
|
|
|
responses <- schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{{
|
|
Delta: &schema.Message{
|
|
Role: "assistant",
|
|
ToolCalls: []schema.ToolCall{
|
|
{
|
|
Index: i,
|
|
ID: id,
|
|
Type: "function",
|
|
FunctionCall: schema.FunctionCall{
|
|
Arguments: args,
|
|
},
|
|
},
|
|
},
|
|
}}},
|
|
Object: "chat.completion.chunk",
|
|
}
|
|
}
|
|
}
|
|
|
|
close(responses)
|
|
}
|
|
|
|
return func(c *fiber.Ctx) error {
|
|
processFunctions := false
|
|
funcs := grammar.Functions{}
|
|
modelFile, input, err := readRequest(c, o, true)
|
|
if err != nil {
|
|
return fmt.Errorf("failed reading parameters from request:%w", err)
|
|
}
|
|
|
|
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
|
|
if err != nil {
|
|
return fmt.Errorf("failed reading parameters from request:%w", err)
|
|
}
|
|
log.Debug().Msgf("Configuration read: %+v", config)
|
|
|
|
// Allow the user to set custom actions via config file
|
|
// to be "embedded" in each model
|
|
noActionName := "answer"
|
|
noActionDescription := "use this action to answer without performing any action"
|
|
|
|
if config.FunctionsConfig.NoActionFunctionName != "" {
|
|
noActionName = config.FunctionsConfig.NoActionFunctionName
|
|
}
|
|
if config.FunctionsConfig.NoActionDescriptionName != "" {
|
|
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
|
|
}
|
|
|
|
if input.ResponseFormat.Type == "json_object" {
|
|
input.Grammar = grammar.JSONBNF
|
|
}
|
|
|
|
// process functions if we have any defined or if we have a function call string
|
|
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
|
|
log.Debug().Msgf("Response needs to process functions")
|
|
|
|
processFunctions = true
|
|
|
|
noActionGrammar := grammar.Function{
|
|
Name: noActionName,
|
|
Description: noActionDescription,
|
|
Parameters: map[string]interface{}{
|
|
"properties": map[string]interface{}{
|
|
"message": map[string]interface{}{
|
|
"type": "string",
|
|
"description": "The message to reply the user with",
|
|
}},
|
|
},
|
|
}
|
|
|
|
// Append the no action function
|
|
funcs = append(funcs, input.Functions...)
|
|
if !config.FunctionsConfig.DisableNoAction {
|
|
funcs = append(funcs, noActionGrammar)
|
|
}
|
|
|
|
// Force picking one of the functions by the request
|
|
if config.FunctionToCall() != "" {
|
|
funcs = funcs.Select(config.FunctionToCall())
|
|
}
|
|
|
|
// Update input grammar
|
|
jsStruct := funcs.ToJSONStructure()
|
|
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
|
|
} else if input.JSONFunctionGrammarObject != nil {
|
|
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
|
|
}
|
|
|
|
// functions are not supported in stream mode (yet?)
|
|
toStream := input.Stream
|
|
|
|
log.Debug().Msgf("Parameters: %+v", config)
|
|
|
|
var predInput string
|
|
|
|
suppressConfigSystemPrompt := false
|
|
mess := []string{}
|
|
for messageIndex, i := range input.Messages {
|
|
var content string
|
|
role := i.Role
|
|
|
|
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
|
|
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
|
|
if i.FunctionCall != nil && i.Role == "assistant" {
|
|
roleFn := "assistant_function_call"
|
|
r := config.Roles[roleFn]
|
|
if r != "" {
|
|
role = roleFn
|
|
}
|
|
}
|
|
r := config.Roles[role]
|
|
contentExists := i.Content != nil && i.StringContent != ""
|
|
|
|
// First attempt to populate content via a chat message specific template
|
|
if config.TemplateConfig.ChatMessage != "" {
|
|
chatMessageData := model.ChatMessageTemplateData{
|
|
SystemPrompt: config.SystemPrompt,
|
|
Role: r,
|
|
RoleName: role,
|
|
Content: i.StringContent,
|
|
FunctionName: i.Name,
|
|
MessageIndex: messageIndex,
|
|
}
|
|
templatedChatMessage, err := o.Loader.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
|
if err != nil {
|
|
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, config.TemplateConfig.ChatMessage, err)
|
|
} else {
|
|
if templatedChatMessage == "" {
|
|
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
|
|
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
|
|
}
|
|
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
|
|
content = templatedChatMessage
|
|
}
|
|
}
|
|
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
|
|
if content == "" {
|
|
if r != "" {
|
|
if contentExists {
|
|
content = fmt.Sprint(r, i.StringContent)
|
|
}
|
|
if i.FunctionCall != nil {
|
|
j, err := json.Marshal(i.FunctionCall)
|
|
if err == nil {
|
|
if contentExists {
|
|
content += "\n" + fmt.Sprint(r, " ", string(j))
|
|
} else {
|
|
content = fmt.Sprint(r, " ", string(j))
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if contentExists {
|
|
content = fmt.Sprint(i.StringContent)
|
|
}
|
|
if i.FunctionCall != nil {
|
|
j, err := json.Marshal(i.FunctionCall)
|
|
if err == nil {
|
|
if contentExists {
|
|
content += "\n" + string(j)
|
|
} else {
|
|
content = string(j)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
|
|
if contentExists && role == "system" {
|
|
suppressConfigSystemPrompt = true
|
|
}
|
|
}
|
|
|
|
mess = append(mess, content)
|
|
}
|
|
|
|
predInput = strings.Join(mess, "\n")
|
|
log.Debug().Msgf("Prompt (before templating): %s", predInput)
|
|
|
|
if toStream {
|
|
log.Debug().Msgf("Stream request received")
|
|
c.Context().SetContentType("text/event-stream")
|
|
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
|
// c.Set("Content-Type", "text/event-stream")
|
|
c.Set("Cache-Control", "no-cache")
|
|
c.Set("Connection", "keep-alive")
|
|
c.Set("Transfer-Encoding", "chunked")
|
|
}
|
|
|
|
templateFile := ""
|
|
|
|
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
|
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
|
templateFile = config.Model
|
|
}
|
|
|
|
if config.TemplateConfig.Chat != "" && !processFunctions {
|
|
templateFile = config.TemplateConfig.Chat
|
|
}
|
|
|
|
if config.TemplateConfig.Functions != "" && processFunctions {
|
|
templateFile = config.TemplateConfig.Functions
|
|
}
|
|
|
|
if templateFile != "" {
|
|
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
|
SystemPrompt: config.SystemPrompt,
|
|
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
|
Input: predInput,
|
|
Functions: funcs,
|
|
})
|
|
if err == nil {
|
|
predInput = templatedInput
|
|
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
|
} else {
|
|
log.Debug().Msgf("Template failed loading: %s", err.Error())
|
|
}
|
|
}
|
|
|
|
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
|
if processFunctions {
|
|
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
|
}
|
|
|
|
switch {
|
|
case toStream:
|
|
responses := make(chan schema.OpenAIResponse)
|
|
|
|
if !processFunctions {
|
|
go process(predInput, input, config, o.Loader, responses)
|
|
} else {
|
|
go processTools(noActionName, predInput, input, config, o.Loader, responses)
|
|
}
|
|
|
|
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
|
usage := &schema.OpenAIUsage{}
|
|
toolsCalled := false
|
|
for ev := range responses {
|
|
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
|
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
|
|
toolsCalled = true
|
|
}
|
|
var buf bytes.Buffer
|
|
enc := json.NewEncoder(&buf)
|
|
enc.Encode(ev)
|
|
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
|
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
|
|
if err != nil {
|
|
log.Debug().Msgf("Sending chunk failed: %v", err)
|
|
input.Cancel()
|
|
break
|
|
}
|
|
w.Flush()
|
|
}
|
|
|
|
finishReason := "stop"
|
|
if toolsCalled {
|
|
finishReason = "tool_calls"
|
|
} else if toolsCalled && len(input.Tools) == 0 {
|
|
finishReason = "function_call"
|
|
}
|
|
|
|
resp := &schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []schema.Choice{
|
|
{
|
|
FinishReason: finishReason,
|
|
Index: 0,
|
|
Delta: &schema.Message{Content: &emptyMessage},
|
|
}},
|
|
Object: "chat.completion.chunk",
|
|
Usage: *usage,
|
|
}
|
|
respData, _ := json.Marshal(resp)
|
|
|
|
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
|
|
w.WriteString("data: [DONE]\n\n")
|
|
w.Flush()
|
|
}))
|
|
return nil
|
|
|
|
// no streaming mode
|
|
default:
|
|
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
|
|
if !processFunctions {
|
|
// no function is called, just reply and use stop as finish reason
|
|
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
|
return
|
|
}
|
|
|
|
results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls)
|
|
noActionsToRun := len(results) > 0 && results[0].name == noActionName
|
|
|
|
switch {
|
|
case noActionsToRun:
|
|
result, err := handleQuestion(config, input, o, results[0].arguments, predInput)
|
|
if err != nil {
|
|
log.Error().Msgf("error handling question: %s", err.Error())
|
|
return
|
|
}
|
|
*c = append(*c, schema.Choice{
|
|
Message: &schema.Message{Role: "assistant", Content: &result}})
|
|
default:
|
|
toolChoice := schema.Choice{
|
|
Message: &schema.Message{
|
|
Role: "assistant",
|
|
},
|
|
}
|
|
|
|
if len(input.Tools) > 0 {
|
|
toolChoice.FinishReason = "tool_calls"
|
|
}
|
|
|
|
for _, ss := range results {
|
|
name, args := ss.name, ss.arguments
|
|
if len(input.Tools) > 0 {
|
|
// If we are using tools, we condense the function calls into
|
|
// a single response choice with all the tools
|
|
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
|
|
schema.ToolCall{
|
|
ID: id,
|
|
Type: "function",
|
|
FunctionCall: schema.FunctionCall{
|
|
Name: name,
|
|
Arguments: args,
|
|
},
|
|
},
|
|
)
|
|
} else {
|
|
// otherwise we return more choices directly
|
|
*c = append(*c, schema.Choice{
|
|
FinishReason: "function_call",
|
|
Message: &schema.Message{
|
|
Role: "assistant",
|
|
FunctionCall: map[string]interface{}{
|
|
"name": name,
|
|
"arguments": args,
|
|
},
|
|
},
|
|
})
|
|
}
|
|
}
|
|
|
|
if len(input.Tools) > 0 {
|
|
// we need to append our result if we are using tools
|
|
*c = append(*c, toolChoice)
|
|
}
|
|
}
|
|
|
|
}, nil)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
resp := &schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: result,
|
|
Object: "chat.completion",
|
|
Usage: schema.OpenAIUsage{
|
|
PromptTokens: tokenUsage.Prompt,
|
|
CompletionTokens: tokenUsage.Completion,
|
|
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
|
},
|
|
}
|
|
respData, _ := json.Marshal(resp)
|
|
log.Debug().Msgf("Response: %s", respData)
|
|
|
|
// Return the prediction in the response body
|
|
return c.JSON(resp)
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
func handleQuestion(config *config.Config, input *schema.OpenAIRequest, o *options.Option, args, prompt string) (string, error) {
|
|
log.Debug().Msgf("nothing to do, computing a reply")
|
|
|
|
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
|
arguments := map[string]interface{}{}
|
|
json.Unmarshal([]byte(args), &arguments)
|
|
m, exists := arguments["message"]
|
|
if exists {
|
|
switch message := m.(type) {
|
|
case string:
|
|
if message != "" {
|
|
log.Debug().Msgf("Reply received from LLM: %s", message)
|
|
message = backend.Finetune(*config, prompt, message)
|
|
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
|
|
|
return message, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
|
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
|
// Note: This costs (in term of CPU/GPU) another computation
|
|
config.Grammar = ""
|
|
images := []string{}
|
|
for _, m := range input.Messages {
|
|
images = append(images, m.StringImages...)
|
|
}
|
|
|
|
predFunc, err := backend.ModelInference(input.Context, prompt, images, o.Loader, *config, o, nil)
|
|
if err != nil {
|
|
log.Error().Msgf("inference error: %s", err.Error())
|
|
return "", err
|
|
}
|
|
|
|
prediction, err := predFunc()
|
|
if err != nil {
|
|
log.Error().Msgf("inference error: %s", err.Error())
|
|
return "", err
|
|
}
|
|
return backend.Finetune(*config, prompt, prediction.Response), nil
|
|
}
|
|
|
|
type funcCallResults struct {
|
|
name string
|
|
arguments string
|
|
}
|
|
|
|
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
|
|
results := []funcCallResults{}
|
|
|
|
// TODO: use generics to avoid this code duplication
|
|
if multipleResults {
|
|
ss := []map[string]interface{}{}
|
|
s := utils.EscapeNewLines(llmresult)
|
|
json.Unmarshal([]byte(s), &ss)
|
|
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
|
|
|
for _, s := range ss {
|
|
func_name := s["function"]
|
|
args := s["arguments"]
|
|
d, _ := json.Marshal(args)
|
|
results = append(results, funcCallResults{name: func_name.(string), arguments: string(d)})
|
|
}
|
|
} else {
|
|
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
|
|
ss := map[string]interface{}{}
|
|
// This prevent newlines to break JSON parsing for clients
|
|
s := utils.EscapeNewLines(llmresult)
|
|
json.Unmarshal([]byte(s), &ss)
|
|
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
|
|
|
// The grammar defines the function name as "function", while OpenAI returns "name"
|
|
func_name := ss["function"]
|
|
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
|
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
|
d, _ := json.Marshal(args)
|
|
|
|
results = append(results, funcCallResults{name: func_name.(string), arguments: string(d)})
|
|
}
|
|
|
|
return results
|
|
}
|