LocalAI/core/http/endpoints/openai/embeddings.go
Ettore Di Giacinto af9e5a2d05
Revert #1963 (#2056)
* Revert "fix(fncall): fix regression introduced in #1963 (#2048)"

This reverts commit 6b06d4e0af.

* Revert "fix: action-tmate back to upstream, dead code removal (#2038)"

This reverts commit fdec8a9d00.

* Revert "feat(grpc): return consumed token count and update response accordingly (#2035)"

This reverts commit e843d7df0e.

* Revert "refactor: backend/service split, channel-based llm flow (#1963)"

This reverts commit eed5706994.

* feat(grpc): return consumed token count and update response accordingly

Fixes: #1920

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-17 23:33:49 +02:00

84 lines
2.5 KiB
Go

package openai
import (
"encoding/json"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
// EmbeddingsEndpoint is the OpenAI Embeddings API endpoint https://platform.openai.com/docs/api-reference/embeddings
// @Summary Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/embeddings [post]
func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readRequest(c, ml, appConfig, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(model, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
items := []schema.Item{}
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding("", s, ml, *config, appConfig)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding(s, []int{}, ml, *config, appConfig)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}