mirror of
https://github.com/mudler/LocalAI.git
synced 2024-06-07 19:40:48 +00:00
5cba71de70
Signed-off-by: mudler <mudler@mocaccino.org>
407 lines
10 KiB
Go
407 lines
10 KiB
Go
package api
|
|
|
|
import (
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"strings"
|
|
"sync"
|
|
|
|
model "github.com/go-skynet/LocalAI/pkg/model"
|
|
gpt2 "github.com/go-skynet/go-gpt2.cpp"
|
|
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
|
llama "github.com/go-skynet/go-llama.cpp"
|
|
"github.com/gofiber/fiber/v2"
|
|
"github.com/gofiber/fiber/v2/middleware/cors"
|
|
"github.com/gofiber/fiber/v2/middleware/recover"
|
|
"github.com/rs/zerolog/log"
|
|
)
|
|
|
|
type OpenAIResponse struct {
|
|
Created int `json:"created,omitempty"`
|
|
Object string `json:"chat.completion,omitempty"`
|
|
ID string `json:"id,omitempty"`
|
|
Model string `json:"model,omitempty"`
|
|
Choices []Choice `json:"choices,omitempty"`
|
|
}
|
|
|
|
type Choice struct {
|
|
Index int `json:"index,omitempty"`
|
|
FinishReason string `json:"finish_reason,omitempty"`
|
|
Message *Message `json:"message,omitempty"`
|
|
Text string `json:"text,omitempty"`
|
|
}
|
|
|
|
type Message struct {
|
|
Role string `json:"role,omitempty"`
|
|
Content string `json:"content,omitempty"`
|
|
}
|
|
|
|
type OpenAIModel struct {
|
|
ID string `json:"id"`
|
|
Object string `json:"object"`
|
|
}
|
|
|
|
type OpenAIRequest struct {
|
|
Model string `json:"model"`
|
|
|
|
// Prompt is read only by completion API calls
|
|
Prompt string `json:"prompt"`
|
|
|
|
Stop string `json:"stop"`
|
|
|
|
// Messages is read only by chat/completion API calls
|
|
Messages []Message `json:"messages"`
|
|
|
|
Echo bool `json:"echo"`
|
|
// Common options between all the API calls
|
|
TopP float64 `json:"top_p"`
|
|
TopK int `json:"top_k"`
|
|
Temperature float64 `json:"temperature"`
|
|
Maxtokens int `json:"max_tokens"`
|
|
|
|
N int `json:"n"`
|
|
|
|
// Custom parameters - not present in the OpenAI API
|
|
Batch int `json:"batch"`
|
|
F16 bool `json:"f16kv"`
|
|
IgnoreEOS bool `json:"ignore_eos"`
|
|
RepeatPenalty float64 `json:"repeat_penalty"`
|
|
Keep int `json:"n_keep"`
|
|
|
|
Seed int `json:"seed"`
|
|
}
|
|
|
|
// https://platform.openai.com/docs/api-reference/completions
|
|
func openAIEndpoint(chat, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
|
|
return func(c *fiber.Ctx) error {
|
|
var err error
|
|
var model *llama.LLama
|
|
var gptModel *gptj.GPTJ
|
|
var gpt2Model *gpt2.GPT2
|
|
var stableLMModel *gpt2.StableLM
|
|
|
|
input := new(OpenAIRequest)
|
|
// Get input data from the request body
|
|
if err := c.BodyParser(input); err != nil {
|
|
return err
|
|
}
|
|
modelFile := input.Model
|
|
received, _ := json.Marshal(input)
|
|
|
|
log.Debug().Msgf("Request received: %s", string(received))
|
|
|
|
// Set model from bearer token, if available
|
|
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
|
|
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
|
if modelFile == "" && !bearerExists {
|
|
return fmt.Errorf("no model specified")
|
|
}
|
|
|
|
if bearerExists { // model specified in bearer token takes precedence
|
|
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
|
modelFile = bearer
|
|
}
|
|
|
|
// Try to load the model with both
|
|
var llamaerr, gpt2err, gptjerr, stableerr error
|
|
llamaOpts := []llama.ModelOption{}
|
|
if ctx != 0 {
|
|
llamaOpts = append(llamaOpts, llama.SetContext(ctx))
|
|
}
|
|
if f16 {
|
|
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
|
}
|
|
|
|
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
|
|
model, llamaerr = loader.LoadLLaMAModel(modelFile, llamaOpts...)
|
|
if llamaerr != nil {
|
|
gptModel, gptjerr = loader.LoadGPTJModel(modelFile)
|
|
if gptjerr != nil {
|
|
gpt2Model, gpt2err = loader.LoadGPT2Model(modelFile)
|
|
if gpt2err != nil {
|
|
stableLMModel, stableerr = loader.LoadStableLMModel(modelFile)
|
|
if stableerr != nil {
|
|
return fmt.Errorf("llama: %s gpt: %s gpt2: %s stableLM: %s", llamaerr.Error(), gptjerr.Error(), gpt2err.Error(), stableerr.Error()) // llama failed first, so we want to catch both errors
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
mutexMap.Lock()
|
|
l, ok := mutexes[modelFile]
|
|
if !ok {
|
|
m := &sync.Mutex{}
|
|
mutexes[modelFile] = m
|
|
l = m
|
|
}
|
|
mutexMap.Unlock()
|
|
l.Lock()
|
|
defer l.Unlock()
|
|
|
|
// Set the parameters for the language model prediction
|
|
topP := input.TopP
|
|
if topP == 0 {
|
|
topP = 0.7
|
|
}
|
|
topK := input.TopK
|
|
if topK == 0 {
|
|
topK = 80
|
|
}
|
|
|
|
temperature := input.Temperature
|
|
if temperature == 0 {
|
|
temperature = 0.9
|
|
}
|
|
|
|
tokens := input.Maxtokens
|
|
if tokens == 0 {
|
|
tokens = 512
|
|
}
|
|
|
|
predInput := input.Prompt
|
|
if chat {
|
|
mess := []string{}
|
|
// TODO: encode roles
|
|
for _, i := range input.Messages {
|
|
mess = append(mess, i.Content)
|
|
}
|
|
|
|
predInput = strings.Join(mess, "\n")
|
|
}
|
|
|
|
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
|
templatedInput, err := loader.TemplatePrefix(modelFile, struct {
|
|
Input string
|
|
}{Input: predInput})
|
|
if err == nil {
|
|
predInput = templatedInput
|
|
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
|
}
|
|
|
|
result := []Choice{}
|
|
|
|
n := input.N
|
|
|
|
if input.N == 0 {
|
|
n = 1
|
|
}
|
|
|
|
var predFunc func() (string, error)
|
|
switch {
|
|
case stableLMModel != nil:
|
|
predFunc = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []gpt2.PredictOption{
|
|
gpt2.SetTemperature(temperature),
|
|
gpt2.SetTopP(topP),
|
|
gpt2.SetTopK(topK),
|
|
gpt2.SetTokens(tokens),
|
|
gpt2.SetThreads(threads),
|
|
}
|
|
|
|
if input.Batch != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetBatch(input.Batch))
|
|
}
|
|
|
|
if input.Seed != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetSeed(input.Seed))
|
|
}
|
|
|
|
return stableLMModel.Predict(
|
|
predInput,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
case gpt2Model != nil:
|
|
predFunc = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []gpt2.PredictOption{
|
|
gpt2.SetTemperature(temperature),
|
|
gpt2.SetTopP(topP),
|
|
gpt2.SetTopK(topK),
|
|
gpt2.SetTokens(tokens),
|
|
gpt2.SetThreads(threads),
|
|
}
|
|
|
|
if input.Batch != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetBatch(input.Batch))
|
|
}
|
|
|
|
if input.Seed != 0 {
|
|
predictOptions = append(predictOptions, gpt2.SetSeed(input.Seed))
|
|
}
|
|
|
|
return gpt2Model.Predict(
|
|
predInput,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
case gptModel != nil:
|
|
predFunc = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []gptj.PredictOption{
|
|
gptj.SetTemperature(temperature),
|
|
gptj.SetTopP(topP),
|
|
gptj.SetTopK(topK),
|
|
gptj.SetTokens(tokens),
|
|
gptj.SetThreads(threads),
|
|
}
|
|
|
|
if input.Batch != 0 {
|
|
predictOptions = append(predictOptions, gptj.SetBatch(input.Batch))
|
|
}
|
|
|
|
if input.Seed != 0 {
|
|
predictOptions = append(predictOptions, gptj.SetSeed(input.Seed))
|
|
}
|
|
|
|
return gptModel.Predict(
|
|
predInput,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
case model != nil:
|
|
predFunc = func() (string, error) {
|
|
// Generate the prediction using the language model
|
|
predictOptions := []llama.PredictOption{
|
|
llama.SetTemperature(temperature),
|
|
llama.SetTopP(topP),
|
|
llama.SetTopK(topK),
|
|
llama.SetTokens(tokens),
|
|
llama.SetThreads(threads),
|
|
}
|
|
|
|
if debug {
|
|
predictOptions = append(predictOptions, llama.Debug)
|
|
}
|
|
|
|
if input.Stop != "" {
|
|
predictOptions = append(predictOptions, llama.SetStopWords(input.Stop))
|
|
}
|
|
|
|
if input.RepeatPenalty != 0 {
|
|
predictOptions = append(predictOptions, llama.SetPenalty(input.RepeatPenalty))
|
|
}
|
|
|
|
if input.Keep != 0 {
|
|
predictOptions = append(predictOptions, llama.SetNKeep(input.Keep))
|
|
}
|
|
|
|
if input.Batch != 0 {
|
|
predictOptions = append(predictOptions, llama.SetBatch(input.Batch))
|
|
}
|
|
|
|
if input.F16 {
|
|
predictOptions = append(predictOptions, llama.EnableF16KV)
|
|
}
|
|
|
|
if input.IgnoreEOS {
|
|
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
|
}
|
|
|
|
if input.Seed != 0 {
|
|
predictOptions = append(predictOptions, llama.SetSeed(input.Seed))
|
|
}
|
|
|
|
return model.Predict(
|
|
predInput,
|
|
predictOptions...,
|
|
)
|
|
}
|
|
}
|
|
|
|
for i := 0; i < n; i++ {
|
|
prediction, err := predFunc()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if input.Echo {
|
|
prediction = predInput + prediction
|
|
}
|
|
|
|
if chat {
|
|
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
|
|
} else {
|
|
result = append(result, Choice{Text: prediction})
|
|
}
|
|
}
|
|
|
|
jsonResult, _ := json.Marshal(result)
|
|
log.Debug().Msgf("Response: %s", jsonResult)
|
|
|
|
// Return the prediction in the response body
|
|
return c.JSON(OpenAIResponse{
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: result,
|
|
})
|
|
}
|
|
}
|
|
|
|
func listModels(loader *model.ModelLoader) func(ctx *fiber.Ctx) error {
|
|
return func(c *fiber.Ctx) error {
|
|
models, err := loader.ListModels()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
dataModels := []OpenAIModel{}
|
|
for _, m := range models {
|
|
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
|
}
|
|
return c.JSON(struct {
|
|
Object string `json:"object"`
|
|
Data []OpenAIModel `json:"data"`
|
|
}{
|
|
Object: "list",
|
|
Data: dataModels,
|
|
})
|
|
}
|
|
}
|
|
|
|
func Start(loader *model.ModelLoader, listenAddr string, threads, ctxSize int, f16 bool, debug bool) error {
|
|
// Return errors as JSON responses
|
|
app := fiber.New(fiber.Config{
|
|
// Override default error handler
|
|
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
|
// Status code defaults to 500
|
|
code := fiber.StatusInternalServerError
|
|
|
|
// Retrieve the custom status code if it's a *fiber.Error
|
|
var e *fiber.Error
|
|
if errors.As(err, &e) {
|
|
code = e.Code
|
|
}
|
|
|
|
// Send custom error page
|
|
return ctx.Status(code).JSON(struct {
|
|
Error string `json:"error"`
|
|
}{Error: err.Error()})
|
|
},
|
|
})
|
|
|
|
// Default middleware config
|
|
app.Use(recover.New())
|
|
app.Use(cors.New())
|
|
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
mu := map[string]*sync.Mutex{}
|
|
var mumutex = &sync.Mutex{}
|
|
|
|
// openAI compatible API endpoint
|
|
app.Post("/v1/chat/completions", openAIEndpoint(true, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
|
app.Post("/chat/completions", openAIEndpoint(true, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
|
|
|
app.Post("/v1/completions", openAIEndpoint(false, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
|
app.Post("/completions", openAIEndpoint(false, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
|
|
|
app.Get("/v1/models", listModels(loader))
|
|
app.Get("/models", listModels(loader))
|
|
|
|
// Start the server
|
|
app.Listen(listenAddr)
|
|
return nil
|
|
}
|