LocalAI/backend/python/parler-tts/parler_tts_server.py
Ettore Di Giacinto 0fdff26924
feat(parler-tts): Add new backend (#2027)
* feat(parler-tts): Add new backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(parler-tts): try downgrade protobuf

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(parler-tts): add parler conda env

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Revert "feat(parler-tts): try downgrade protobuf"

This reverts commit bd5941d5cfc00676b45a99f71debf3c34249cf3c.

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* deps: add grpc

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix: try to gen proto with same environment

* workaround

* Revert "fix: try to gen proto with same environment"

This reverts commit 998c745e2f.

* Workaround fixup

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Co-authored-by: Dave <dave@gray101.com>
2024-04-13 18:59:21 +02:00

126 lines
4.7 KiB
Python

#!/usr/bin/env python3
"""
Extra gRPC server for MusicgenForConditionalGeneration models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from scipy.io.wavfile import write as write_wav
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
import torch
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
device = "cuda:0" if torch.cuda.is_available() else "cpu"
try:
self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
model_name = request.model
voice = request.voice
if voice == "":
voice = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
input_ids = self.tokenizer(voice, return_tensors="pt").input_ids.to(device)
prompt_input_ids = self.tokenizer(request.text, return_tensors="pt").input_ids.to(device)
generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
print("[parler-tts] TTS generated!", file=sys.stderr)
sf.write(request.dst, audio_arr, self.model.config.sampling_rate)
print("[parler-tts] TTS saved to", request.dst, file=sys.stderr)
print("[parler-tts] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("[parler-tts] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("[parler-tts] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[parler-tts] startup: {args}", file=sys.stderr)
serve(args.addr)