k3s/vendor/gonum.org/v1/gonum/mat/qr.go

267 lines
7.3 KiB
Go
Raw Normal View History

2019-08-30 18:33:25 +00:00
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badQR = "mat: invalid QR factorization"
// QR is a type for creating and using the QR factorization of a matrix.
type QR struct {
qr *Dense
tau []float64
cond float64
}
func (qr *QR) updateCond(norm lapack.MatrixNorm) {
// Since A = Q*R, and Q is orthogonal, we get for the condition number κ
2020-03-26 21:07:15 +00:00
// κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Qᵀ|
2019-08-30 18:33:25 +00:00
// = |R| |R^-1| = κ(R),
2020-03-26 21:07:15 +00:00
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
2019-08-30 18:33:25 +00:00
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
n := qr.qr.mat.Cols
work := getFloats(3*n, false)
iwork := getInts(n, false)
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(norm, r.mat, work, iwork)
putFloats(work)
putInts(iwork)
qr.cond = 1 / v
}
// Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
// factorization always exists even if A is singular.
//
// The QR decomposition is a factorization of the matrix A such that A = Q * R.
// The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
// Q and R can be extracted using the QTo and RTo methods.
func (qr *QR) Factorize(a Matrix) {
qr.factorize(a, CondNorm)
}
func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m < n {
panic(ErrShape)
}
k := min(m, n)
if qr.qr == nil {
qr.qr = &Dense{}
}
2020-03-26 21:07:15 +00:00
qr.qr.CloneFrom(a)
2019-08-30 18:33:25 +00:00
work := []float64{0}
qr.tau = make([]float64, k)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
putFloats(work)
qr.updateCond(norm)
}
// isValid returns whether the receiver contains a factorization.
func (qr *QR) isValid() bool {
2020-03-26 21:07:15 +00:00
return qr.qr != nil && !qr.qr.IsEmpty()
2019-08-30 18:33:25 +00:00
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (qr *QR) Cond() float64 {
if !qr.isValid() {
panic(badQR)
}
return qr.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
// and upper triangular matrices.
// RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
2020-03-26 21:07:15 +00:00
//
// If dst is empty, RTo will resize dst to be r×c. When dst is non-empty,
// RTo will panic if dst is not r×c. RTo will also panic if the receiver
// does not contain a successful factorization.
func (qr *QR) RTo(dst *Dense) {
2019-08-30 18:33:25 +00:00
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
2020-03-26 21:07:15 +00:00
if dst.IsEmpty() {
dst.ReuseAs(r, c)
2019-08-30 18:33:25 +00:00
} else {
2020-03-26 21:07:15 +00:00
r2, c2 := dst.Dims()
if c != r2 || c != c2 {
panic(ErrShape)
}
2019-08-30 18:33:25 +00:00
}
// Disguise the QR as an upper triangular
t := &TriDense{
mat: blas64.Triangular{
N: c,
Stride: qr.qr.mat.Stride,
Data: qr.qr.mat.Data,
Uplo: blas.Upper,
Diag: blas.NonUnit,
},
cap: qr.qr.capCols,
}
dst.Copy(t)
// Zero below the triangular.
for i := r; i < c; i++ {
zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
}
}
2020-03-26 21:07:15 +00:00
// QTo extracts the r×r orthonormal matrix Q from a QR decomposition.
//
// If dst is empty, QTo will resize dst to be r×r. When dst is non-empty,
// QTo will panic if dst is not r×r. QTo will also panic if the receiver
// does not contain a successful factorization.
func (qr *QR) QTo(dst *Dense) {
2019-08-30 18:33:25 +00:00
if !qr.isValid() {
panic(badQR)
}
r, _ := qr.qr.Dims()
2020-03-26 21:07:15 +00:00
if dst.IsEmpty() {
dst.ReuseAs(r, r)
2019-08-30 18:33:25 +00:00
} else {
2020-03-26 21:07:15 +00:00
r2, c2 := dst.Dims()
if r != r2 || r != c2 {
panic(ErrShape)
}
dst.Zero()
2019-08-30 18:33:25 +00:00
}
// Set Q = I.
for i := 0; i < r*r; i += r + 1 {
dst.mat.Data[i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
putFloats(work)
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its QR factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find X such that ||A*X - B||_2 is minimized.
2020-03-26 21:07:15 +00:00
// If trans == true, find the minimum norm solution of Aᵀ * X = B.
2019-08-30 18:33:25 +00:00
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (qr *QR) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
br, bc := b.Dims()
// The QR solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into m at the end.
if trans {
if c != br {
panic(ErrShape)
}
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(r, bc)
2019-08-30 18:33:25 +00:00
} else {
if r != br {
panic(ErrShape)
}
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(c, bc)
2019-08-30 18:33:25 +00:00
}
// Do not need to worry about overlap between m and b because x has its own
// independent storage.
w := getWorkspace(max(r, c), bc, false)
w.Copy(b)
t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
if trans {
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := c; i < r; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, len(work))
putFloats(work)
} else {
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
}
// X was set above to be the correct size for the result.
dst.Copy(w)
putWorkspace(w)
if qr.cond > ConditionTolerance {
return Condition(qr.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations,
// Ax = b.
// See QR.SolveTo for the full documentation.
// SolveVecTo will panic if the receiver does not contain a factorization.
func (qr *QR) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(r)
2019-08-30 18:33:25 +00:00
} else {
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(c)
2019-08-30 18:33:25 +00:00
}
return qr.SolveTo(dst.asDense(), trans, bm)
}