mirror of
https://github.com/k3s-io/k3s.git
synced 2024-06-07 19:41:36 +00:00
141 lines
3.4 KiB
Go
141 lines
3.4 KiB
Go
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package mat
|
||
|
|
||
|
import (
|
||
|
"gonum.org/v1/gonum/blas"
|
||
|
"gonum.org/v1/gonum/blas/blas64"
|
||
|
"gonum.org/v1/gonum/lapack/lapack64"
|
||
|
)
|
||
|
|
||
|
// Solve finds a minimum-norm solution to a system of linear equations defined
|
||
|
// by the matrices A and B. If A is singular or near-singular, a Condition error
|
||
|
// is returned. See the documentation for Condition for more information.
|
||
|
//
|
||
|
// The minimization problem solved depends on the input parameters:
|
||
|
// - if m >= n, find X such that ||A*X - B||_2 is minimized,
|
||
|
// - if m < n, find the minimum norm solution of A * X = B.
|
||
|
// The solution matrix, X, is stored in-place into the receiver.
|
||
|
func (m *Dense) Solve(a, b Matrix) error {
|
||
|
ar, ac := a.Dims()
|
||
|
br, bc := b.Dims()
|
||
|
if ar != br {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
m.reuseAs(ac, bc)
|
||
|
|
||
|
// TODO(btracey): Add special cases for SymDense, etc.
|
||
|
aU, aTrans := untranspose(a)
|
||
|
bU, bTrans := untranspose(b)
|
||
|
switch rma := aU.(type) {
|
||
|
case RawTriangular:
|
||
|
side := blas.Left
|
||
|
tA := blas.NoTrans
|
||
|
if aTrans {
|
||
|
tA = blas.Trans
|
||
|
}
|
||
|
|
||
|
switch rm := bU.(type) {
|
||
|
case RawMatrixer:
|
||
|
if m != bU || bTrans {
|
||
|
if m == bU || m.checkOverlap(rm.RawMatrix()) {
|
||
|
tmp := getWorkspace(br, bc, false)
|
||
|
tmp.Copy(b)
|
||
|
m.Copy(tmp)
|
||
|
putWorkspace(tmp)
|
||
|
break
|
||
|
}
|
||
|
m.Copy(b)
|
||
|
}
|
||
|
default:
|
||
|
if m != bU {
|
||
|
m.Copy(b)
|
||
|
} else if bTrans {
|
||
|
// m and b share data so Copy cannot be used directly.
|
||
|
tmp := getWorkspace(br, bc, false)
|
||
|
tmp.Copy(b)
|
||
|
m.Copy(tmp)
|
||
|
putWorkspace(tmp)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rm := rma.RawTriangular()
|
||
|
blas64.Trsm(side, tA, 1, rm, m.mat)
|
||
|
work := getFloats(3*rm.N, false)
|
||
|
iwork := getInts(rm.N, false)
|
||
|
cond := lapack64.Trcon(CondNorm, rm, work, iwork)
|
||
|
putFloats(work)
|
||
|
putInts(iwork)
|
||
|
if cond > ConditionTolerance {
|
||
|
return Condition(cond)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
switch {
|
||
|
case ar == ac:
|
||
|
if a == b {
|
||
|
// x = I.
|
||
|
if ar == 1 {
|
||
|
m.mat.Data[0] = 1
|
||
|
return nil
|
||
|
}
|
||
|
for i := 0; i < ar; i++ {
|
||
|
v := m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+ac]
|
||
|
zero(v)
|
||
|
v[i] = 1
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
var lu LU
|
||
|
lu.Factorize(a)
|
||
|
return lu.SolveTo(m, false, b)
|
||
|
case ar > ac:
|
||
|
var qr QR
|
||
|
qr.Factorize(a)
|
||
|
return qr.SolveTo(m, false, b)
|
||
|
default:
|
||
|
var lq LQ
|
||
|
lq.Factorize(a)
|
||
|
return lq.SolveTo(m, false, b)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// SolveVec finds a minimum-norm solution to a system of linear equations defined
|
||
|
// by the matrix a and the right-hand side column vector b. If A is singular or
|
||
|
// near-singular, a Condition error is returned. See the documentation for
|
||
|
// Dense.Solve for more information.
|
||
|
func (v *VecDense) SolveVec(a Matrix, b Vector) error {
|
||
|
if _, bc := b.Dims(); bc != 1 {
|
||
|
panic(ErrShape)
|
||
|
}
|
||
|
_, c := a.Dims()
|
||
|
|
||
|
// The Solve implementation is non-trivial, so rather than duplicate the code,
|
||
|
// instead recast the VecDenses as Dense and call the matrix code.
|
||
|
|
||
|
if rv, ok := b.(RawVectorer); ok {
|
||
|
bmat := rv.RawVector()
|
||
|
if v != b {
|
||
|
v.checkOverlap(bmat)
|
||
|
}
|
||
|
v.reuseAs(c)
|
||
|
m := v.asDense()
|
||
|
// We conditionally create bm as m when b and v are identical
|
||
|
// to prevent the overlap detection code from identifying m
|
||
|
// and bm as overlapping but not identical.
|
||
|
bm := m
|
||
|
if v != b {
|
||
|
b := VecDense{mat: bmat}
|
||
|
bm = b.asDense()
|
||
|
}
|
||
|
return m.Solve(a, bm)
|
||
|
}
|
||
|
|
||
|
v.reuseAs(c)
|
||
|
m := v.asDense()
|
||
|
return m.Solve(a, b)
|
||
|
}
|