// Copyright ©2013 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mat import ( "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) var ( dense *Dense _ Matrix = dense _ allMatrix = dense _ denseMatrix = dense _ Mutable = dense _ ClonerFrom = dense _ RowViewer = dense _ ColViewer = dense _ RawRowViewer = dense _ Grower = dense _ RawMatrixSetter = dense _ RawMatrixer = dense _ Reseter = dense ) // Dense is a dense matrix representation. type Dense struct { mat blas64.General capRows, capCols int } // NewDense creates a new Dense matrix with r rows and c columns. If data == nil, // a new slice is allocated for the backing slice. If len(data) == r*c, data is // used as the backing slice, and changes to the elements of the returned Dense // will be reflected in data. If neither of these is true, NewDense will panic. // NewDense will panic if either r or c is zero. // // The data must be arranged in row-major order, i.e. the (i*c + j)-th // element in the data slice is the {i, j}-th element in the matrix. func NewDense(r, c int, data []float64) *Dense { if r <= 0 || c <= 0 { if r == 0 || c == 0 { panic(ErrZeroLength) } panic(ErrNegativeDimension) } if data != nil && r*c != len(data) { panic(ErrShape) } if data == nil { data = make([]float64, r*c) } return &Dense{ mat: blas64.General{ Rows: r, Cols: c, Stride: c, Data: data, }, capRows: r, capCols: c, } } // ReuseAs changes the receiver if it IsEmpty() to be of size r×c. // // ReuseAs re-uses the backing data slice if it has sufficient capacity, // otherwise a new slice is allocated. The backing data is zero on return. // // ReuseAs panics if the receiver is not empty, and panics if // the input sizes are less than one. To empty the receiver for re-use, // Reset should be used. func (m *Dense) ReuseAs(r, c int) { if r <= 0 || c <= 0 { if r == 0 || c == 0 { panic(ErrZeroLength) } panic(ErrNegativeDimension) } if !m.IsEmpty() { panic(ErrReuseNonEmpty) } m.reuseAsZeroed(r, c) } // reuseAsNonZeroed resizes an empty matrix to a r×c matrix, // or checks that a non-empty matrix is r×c. It does not zero // the data in the receiver. func (m *Dense) reuseAsNonZeroed(r, c int) { // reuseAs must be kept in sync with reuseAsZeroed. if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols { // Panic as a string, not a mat.Error. panic("mat: caps not correctly set") } if r == 0 || c == 0 { panic(ErrZeroLength) } if m.IsEmpty() { m.mat = blas64.General{ Rows: r, Cols: c, Stride: c, Data: use(m.mat.Data, r*c), } m.capRows = r m.capCols = c return } if r != m.mat.Rows || c != m.mat.Cols { panic(ErrShape) } } // reuseAsZeroed resizes an empty matrix to a r×c matrix, // or checks that a non-empty matrix is r×c. It zeroes // all the elements of the matrix. func (m *Dense) reuseAsZeroed(r, c int) { // reuseAsZeroed must be kept in sync with reuseAsNonZeroed. if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols { // Panic as a string, not a mat.Error. panic("mat: caps not correctly set") } if r == 0 || c == 0 { panic(ErrZeroLength) } if m.IsEmpty() { m.mat = blas64.General{ Rows: r, Cols: c, Stride: c, Data: useZeroed(m.mat.Data, r*c), } m.capRows = r m.capCols = c return } if r != m.mat.Rows || c != m.mat.Cols { panic(ErrShape) } m.Zero() } // Zero sets all of the matrix elements to zero. func (m *Dense) Zero() { r := m.mat.Rows c := m.mat.Cols for i := 0; i < r; i++ { zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c]) } } // isolatedWorkspace returns a new dense matrix w with the size of a and // returns a callback to defer which performs cleanup at the return of the call. // This should be used when a method receiver is the same pointer as an input argument. func (m *Dense) isolatedWorkspace(a Matrix) (w *Dense, restore func()) { r, c := a.Dims() if r == 0 || c == 0 { panic(ErrZeroLength) } w = getWorkspace(r, c, false) return w, func() { m.Copy(w) putWorkspace(w) } } // Reset empties the matrix so that it can be reused as the // receiver of a dimensionally restricted operation. // // Reset should not be used when the matrix shares backing data. // See the Reseter interface for more information. func (m *Dense) Reset() { // Row, Cols and Stride must be zeroed in unison. m.mat.Rows, m.mat.Cols, m.mat.Stride = 0, 0, 0 m.capRows, m.capCols = 0, 0 m.mat.Data = m.mat.Data[:0] } // IsEmpty returns whether the receiver is empty. Empty matrices can be the // receiver for size-restricted operations. The receiver can be emptied using // Reset. func (m *Dense) IsEmpty() bool { // It must be the case that m.Dims() returns // zeros in this case. See comment in Reset(). return m.mat.Stride == 0 } // asTriDense returns a TriDense with the given size and side. The backing data // of the TriDense is the same as the receiver. func (m *Dense) asTriDense(n int, diag blas.Diag, uplo blas.Uplo) *TriDense { return &TriDense{ mat: blas64.Triangular{ N: n, Stride: m.mat.Stride, Data: m.mat.Data, Uplo: uplo, Diag: diag, }, cap: n, } } // DenseCopyOf returns a newly allocated copy of the elements of a. func DenseCopyOf(a Matrix) *Dense { d := &Dense{} d.CloneFrom(a) return d } // SetRawMatrix sets the underlying blas64.General used by the receiver. // Changes to elements in the receiver following the call will be reflected // in b. func (m *Dense) SetRawMatrix(b blas64.General) { m.capRows, m.capCols = b.Rows, b.Cols m.mat = b } // RawMatrix returns the underlying blas64.General used by the receiver. // Changes to elements in the receiver following the call will be reflected // in returned blas64.General. func (m *Dense) RawMatrix() blas64.General { return m.mat } // Dims returns the number of rows and columns in the matrix. func (m *Dense) Dims() (r, c int) { return m.mat.Rows, m.mat.Cols } // Caps returns the number of rows and columns in the backing matrix. func (m *Dense) Caps() (r, c int) { return m.capRows, m.capCols } // T performs an implicit transpose by returning the receiver inside a Transpose. func (m *Dense) T() Matrix { return Transpose{m} } // ColView returns a Vector reflecting the column j, backed by the matrix data. // // See ColViewer for more information. func (m *Dense) ColView(j int) Vector { var v VecDense v.ColViewOf(m, j) return &v } // SetCol sets the values in the specified column of the matrix to the values // in src. len(src) must equal the number of rows in the receiver. func (m *Dense) SetCol(j int, src []float64) { if j >= m.mat.Cols || j < 0 { panic(ErrColAccess) } if len(src) != m.mat.Rows { panic(ErrColLength) } blas64.Copy( blas64.Vector{N: m.mat.Rows, Inc: 1, Data: src}, blas64.Vector{N: m.mat.Rows, Inc: m.mat.Stride, Data: m.mat.Data[j:]}, ) } // SetRow sets the values in the specified rows of the matrix to the values // in src. len(src) must equal the number of columns in the receiver. func (m *Dense) SetRow(i int, src []float64) { if i >= m.mat.Rows || i < 0 { panic(ErrRowAccess) } if len(src) != m.mat.Cols { panic(ErrRowLength) } copy(m.rawRowView(i), src) } // RowView returns row i of the matrix data represented as a column vector, // backed by the matrix data. // // See RowViewer for more information. func (m *Dense) RowView(i int) Vector { var v VecDense v.RowViewOf(m, i) return &v } // RawRowView returns a slice backed by the same array as backing the // receiver. func (m *Dense) RawRowView(i int) []float64 { if i >= m.mat.Rows || i < 0 { panic(ErrRowAccess) } return m.rawRowView(i) } func (m *Dense) rawRowView(i int) []float64 { return m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+m.mat.Cols] } // DiagView returns the diagonal as a matrix backed by the original data. func (m *Dense) DiagView() Diagonal { n := min(m.mat.Rows, m.mat.Cols) return &DiagDense{ mat: blas64.Vector{ N: n, Inc: m.mat.Stride + 1, Data: m.mat.Data[:(n-1)*m.mat.Stride+n], }, } } // Slice returns a new Matrix that shares backing data with the receiver. // The returned matrix starts at {i,j} of the receiver and extends k-i rows // and l-j columns. The final row in the resulting matrix is k-1 and the // final column is l-1. // Slice panics with ErrIndexOutOfRange if the slice is outside the capacity // of the receiver. func (m *Dense) Slice(i, k, j, l int) Matrix { mr, mc := m.Caps() if i < 0 || mr <= i || j < 0 || mc <= j || k < i || mr < k || l < j || mc < l { if i == k || j == l { panic(ErrZeroLength) } panic(ErrIndexOutOfRange) } t := *m t.mat.Data = t.mat.Data[i*t.mat.Stride+j : (k-1)*t.mat.Stride+l] t.mat.Rows = k - i t.mat.Cols = l - j t.capRows -= i t.capCols -= j return &t } // Grow returns the receiver expanded by r rows and c columns. If the dimensions // of the expanded matrix are outside the capacities of the receiver a new // allocation is made, otherwise not. Note the receiver itself is not modified // during the call to Grow. func (m *Dense) Grow(r, c int) Matrix { if r < 0 || c < 0 { panic(ErrIndexOutOfRange) } if r == 0 && c == 0 { return m } r += m.mat.Rows c += m.mat.Cols var t Dense switch { case m.mat.Rows == 0 || m.mat.Cols == 0: t.mat = blas64.General{ Rows: r, Cols: c, Stride: c, // We zero because we don't know how the matrix will be used. // In other places, the mat is immediately filled with a result; // this is not the case here. Data: useZeroed(m.mat.Data, r*c), } case r > m.capRows || c > m.capCols: cr := max(r, m.capRows) cc := max(c, m.capCols) t.mat = blas64.General{ Rows: r, Cols: c, Stride: cc, Data: make([]float64, cr*cc), } t.capRows = cr t.capCols = cc // Copy the complete matrix over to the new matrix. // Including elements not currently visible. Use a temporary structure // to avoid modifying the receiver. var tmp Dense tmp.mat = blas64.General{ Rows: m.mat.Rows, Cols: m.mat.Cols, Stride: m.mat.Stride, Data: m.mat.Data, } tmp.capRows = m.capRows tmp.capCols = m.capCols t.Copy(&tmp) return &t default: t.mat = blas64.General{ Data: m.mat.Data[:(r-1)*m.mat.Stride+c], Rows: r, Cols: c, Stride: m.mat.Stride, } } t.capRows = r t.capCols = c return &t } // CloneFrom makes a copy of a into the receiver, overwriting the previous value of // the receiver. The clone from operation does not make any restriction on shape and // will not cause shadowing. // // See the ClonerFrom interface for more information. func (m *Dense) CloneFrom(a Matrix) { r, c := a.Dims() mat := blas64.General{ Rows: r, Cols: c, Stride: c, } m.capRows, m.capCols = r, c aU, trans := untransposeExtract(a) switch aU := aU.(type) { case *Dense: amat := aU.mat mat.Data = make([]float64, r*c) if trans { for i := 0; i < r; i++ { blas64.Copy(blas64.Vector{N: c, Inc: amat.Stride, Data: amat.Data[i : i+(c-1)*amat.Stride+1]}, blas64.Vector{N: c, Inc: 1, Data: mat.Data[i*c : (i+1)*c]}) } } else { for i := 0; i < r; i++ { copy(mat.Data[i*c:(i+1)*c], amat.Data[i*amat.Stride:i*amat.Stride+c]) } } case *VecDense: amat := aU.mat mat.Data = make([]float64, aU.mat.N) blas64.Copy(blas64.Vector{N: aU.mat.N, Inc: amat.Inc, Data: amat.Data}, blas64.Vector{N: aU.mat.N, Inc: 1, Data: mat.Data}) default: mat.Data = make([]float64, r*c) w := *m w.mat = mat for i := 0; i < r; i++ { for j := 0; j < c; j++ { w.set(i, j, a.At(i, j)) } } *m = w return } m.mat = mat } // Copy makes a copy of elements of a into the receiver. It is similar to the // built-in copy; it copies as much as the overlap between the two matrices and // returns the number of rows and columns it copied. If a aliases the receiver // and is a transposed Dense or VecDense, with a non-unitary increment, Copy will // panic. // // See the Copier interface for more information. func (m *Dense) Copy(a Matrix) (r, c int) { r, c = a.Dims() if a == m { return r, c } r = min(r, m.mat.Rows) c = min(c, m.mat.Cols) if r == 0 || c == 0 { return 0, 0 } aU, trans := untransposeExtract(a) switch aU := aU.(type) { case *Dense: amat := aU.mat if trans { if amat.Stride != 1 { m.checkOverlap(amat) } for i := 0; i < r; i++ { blas64.Copy(blas64.Vector{N: c, Inc: amat.Stride, Data: amat.Data[i : i+(c-1)*amat.Stride+1]}, blas64.Vector{N: c, Inc: 1, Data: m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c]}) } } else { switch o := offset(m.mat.Data, amat.Data); { case o < 0: for i := r - 1; i >= 0; i-- { copy(m.mat.Data[i*m.mat.Stride:i*m.mat.Stride+c], amat.Data[i*amat.Stride:i*amat.Stride+c]) } case o > 0: for i := 0; i < r; i++ { copy(m.mat.Data[i*m.mat.Stride:i*m.mat.Stride+c], amat.Data[i*amat.Stride:i*amat.Stride+c]) } default: // Nothing to do. } } case *VecDense: var n, stride int amat := aU.mat if trans { if amat.Inc != 1 { m.checkOverlap(aU.asGeneral()) } n = c stride = 1 } else { n = r stride = m.mat.Stride } if amat.Inc == 1 && stride == 1 { copy(m.mat.Data, amat.Data[:n]) break } switch o := offset(m.mat.Data, amat.Data); { case o < 0: blas64.Copy(blas64.Vector{N: n, Inc: -amat.Inc, Data: amat.Data}, blas64.Vector{N: n, Inc: -stride, Data: m.mat.Data}) case o > 0: blas64.Copy(blas64.Vector{N: n, Inc: amat.Inc, Data: amat.Data}, blas64.Vector{N: n, Inc: stride, Data: m.mat.Data}) default: // Nothing to do. } default: m.checkOverlapMatrix(aU) for i := 0; i < r; i++ { for j := 0; j < c; j++ { m.set(i, j, a.At(i, j)) } } } return r, c } // Stack appends the rows of b onto the rows of a, placing the result into the // receiver with b placed in the greater indexed rows. Stack will panic if the // two input matrices do not have the same number of columns or the constructed // stacked matrix is not the same shape as the receiver. func (m *Dense) Stack(a, b Matrix) { ar, ac := a.Dims() br, bc := b.Dims() if ac != bc || m == a || m == b { panic(ErrShape) } m.reuseAsNonZeroed(ar+br, ac) m.Copy(a) w := m.Slice(ar, ar+br, 0, bc).(*Dense) w.Copy(b) } // Augment creates the augmented matrix of a and b, where b is placed in the // greater indexed columns. Augment will panic if the two input matrices do // not have the same number of rows or the constructed augmented matrix is // not the same shape as the receiver. func (m *Dense) Augment(a, b Matrix) { ar, ac := a.Dims() br, bc := b.Dims() if ar != br || m == a || m == b { panic(ErrShape) } m.reuseAsNonZeroed(ar, ac+bc) m.Copy(a) w := m.Slice(0, br, ac, ac+bc).(*Dense) w.Copy(b) } // Trace returns the trace of the matrix. The matrix must be square or Trace // will panic. func (m *Dense) Trace() float64 { if m.mat.Rows != m.mat.Cols { panic(ErrSquare) } // TODO(btracey): could use internal asm sum routine. var v float64 for i := 0; i < m.mat.Rows; i++ { v += m.mat.Data[i*m.mat.Stride+i] } return v }