// Copyright ©2019 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mat import "gonum.org/v1/gonum/blas/cblas128" // Dense is a dense matrix representation with complex data. type CDense struct { mat cblas128.General capRows, capCols int } // Dims returns the number of rows and columns in the matrix. func (m *CDense) Dims() (r, c int) { return m.mat.Rows, m.mat.Cols } // H performs an implicit conjugate transpose by returning the receiver inside a // Conjugate. func (m *CDense) H() CMatrix { return Conjugate{m} } // NewCDense creates a new complex Dense matrix with r rows and c columns. // If data == nil, a new slice is allocated for the backing slice. // If len(data) == r*c, data is used as the backing slice, and changes to the // elements of the returned CDense will be reflected in data. // If neither of these is true, NewCDense will panic. // NewCDense will panic if either r or c is zero. // // The data must be arranged in row-major order, i.e. the (i*c + j)-th // element in the data slice is the {i, j}-th element in the matrix. func NewCDense(r, c int, data []complex128) *CDense { if r <= 0 || c <= 0 { if r == 0 || c == 0 { panic(ErrZeroLength) } panic("mat: negative dimension") } if data != nil && r*c != len(data) { panic(ErrShape) } if data == nil { data = make([]complex128, r*c) } return &CDense{ mat: cblas128.General{ Rows: r, Cols: c, Stride: c, Data: data, }, capRows: r, capCols: c, } } // reuseAs resizes an empty matrix to a r×c matrix, // or checks that a non-empty matrix is r×c. // // reuseAs must be kept in sync with reuseAsZeroed. func (m *CDense) reuseAs(r, c int) { if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols { // Panic as a string, not a mat.Error. panic("mat: caps not correctly set") } if r == 0 || c == 0 { panic(ErrZeroLength) } if m.IsZero() { m.mat = cblas128.General{ Rows: r, Cols: c, Stride: c, Data: useC(m.mat.Data, r*c), } m.capRows = r m.capCols = c return } if r != m.mat.Rows || c != m.mat.Cols { panic(ErrShape) } } func (m *CDense) reuseAsZeroed(r, c int) { // This must be kept in-sync with reuseAs. if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols { // Panic as a string, not a mat.Error. panic("mat: caps not correctly set") } if r == 0 || c == 0 { panic(ErrZeroLength) } if m.IsZero() { m.mat = cblas128.General{ Rows: r, Cols: c, Stride: c, Data: useZeroedC(m.mat.Data, r*c), } m.capRows = r m.capCols = c return } if r != m.mat.Rows || c != m.mat.Cols { panic(ErrShape) } m.Zero() } // Reset zeros the dimensions of the matrix so that it can be reused as the // receiver of a dimensionally restricted operation. // // See the Reseter interface for more information. func (m *CDense) Reset() { // Row, Cols and Stride must be zeroed in unison. m.mat.Rows, m.mat.Cols, m.mat.Stride = 0, 0, 0 m.capRows, m.capCols = 0, 0 m.mat.Data = m.mat.Data[:0] } // IsZero returns whether the receiver is zero-sized. Zero-sized matrices can be the // receiver for size-restricted operations. CDense matrices can be zeroed using Reset. func (m *CDense) IsZero() bool { // It must be the case that m.Dims() returns // zeros in this case. See comment in Reset(). return m.mat.Stride == 0 } // Zero sets all of the matrix elements to zero. func (m *CDense) Zero() { r := m.mat.Rows c := m.mat.Cols for i := 0; i < r; i++ { zeroC(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c]) } } // Copy makes a copy of elements of a into the receiver. It is similar to the // built-in copy; it copies as much as the overlap between the two matrices and // returns the number of rows and columns it copied. If a aliases the receiver // and is a transposed Dense or VecDense, with a non-unitary increment, Copy will // panic. // // See the Copier interface for more information. func (m *CDense) Copy(a CMatrix) (r, c int) { r, c = a.Dims() if a == m { return r, c } r = min(r, m.mat.Rows) c = min(c, m.mat.Cols) if r == 0 || c == 0 { return 0, 0 } // TODO(btracey): Check for overlap when complex version exists. // TODO(btracey): Add fast-paths. for i := 0; i < r; i++ { for j := 0; j < c; j++ { m.set(i, j, a.At(i, j)) } } return r, c }