k3s/vendor/gonum.org/v1/gonum/mat/lu.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

440 lines
12 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badSliceLength = "mat: improper slice length"
badLU = "mat: invalid LU factorization"
)
// LU is a type for creating and using the LU factorization of a matrix.
type LU struct {
lu *Dense
pivot []int
cond float64
}
// updateCond updates the stored condition number of the matrix. anorm is the
// norm of the original matrix. If anorm is negative it will be estimated.
func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
n := lu.lu.mat.Cols
work := getFloats(4*n, false)
defer putFloats(work)
iwork := getInts(n, false)
defer putInts(iwork)
if anorm < 0 {
// This is an approximation. By the definition of a norm,
// |AB| <= |A| |B|.
// Since A = L*U, we get for the condition number κ that
// κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
// so this will overestimate the condition number somewhat.
// The norm of the original factorized matrix cannot be stored
// because of update possibilities.
u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
unorm := lapack64.Lantr(norm, u.mat, work)
lnorm := lapack64.Lantr(norm, l.mat, work)
anorm = unorm * lnorm
}
v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
lu.cond = 1 / v
}
// Factorize computes the LU factorization of the square matrix a and stores the
// result. The LU decomposition will complete regardless of the singularity of a.
//
// The LU factorization is computed with pivoting, and so really the decomposition
// is a PLU decomposition where P is a permutation matrix. The individual matrix
// factors can be extracted from the factorization using the Permutation method
// on Dense, and the LU.LTo and LU.UTo methods.
func (lu *LU) Factorize(a Matrix) {
lu.factorize(a, CondNorm)
}
func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
r, c := a.Dims()
if r != c {
panic(ErrSquare)
}
if lu.lu == nil {
lu.lu = NewDense(r, r, nil)
} else {
lu.lu.Reset()
lu.lu.reuseAsNonZeroed(r, r)
}
lu.lu.Copy(a)
if cap(lu.pivot) < r {
lu.pivot = make([]int, r)
}
lu.pivot = lu.pivot[:r]
work := getFloats(r, false)
anorm := lapack64.Lange(norm, lu.lu.mat, work)
putFloats(work)
lapack64.Getrf(lu.lu.mat, lu.pivot)
lu.updateCond(anorm, norm)
}
// isValid returns whether the receiver contains a factorization.
func (lu *LU) isValid() bool {
return lu.lu != nil && !lu.lu.IsEmpty()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lu *LU) Cond() float64 {
if !lu.isValid() {
panic(badLU)
}
return lu.cond
}
// Reset resets the factorization so that it can be reused as the receiver of a
// dimensionally restricted operation.
func (lu *LU) Reset() {
if lu.lu != nil {
lu.lu.Reset()
}
lu.pivot = lu.pivot[:0]
}
func (lu *LU) isZero() bool {
return len(lu.pivot) == 0
}
// Det returns the determinant of the matrix that has been factorized. In many
// expressions, using LogDet will be more numerically stable.
// Det will panic if the receiver does not contain a factorization.
func (lu *LU) Det() float64 {
det, sign := lu.LogDet()
return math.Exp(det) * sign
}
// LogDet returns the log of the determinant and the sign of the determinant
// for the matrix that has been factorized. Numerical stability in product and
// division expressions is generally improved by working in log space.
// LogDet will panic if the receiver does not contain a factorization.
func (lu *LU) LogDet() (det float64, sign float64) {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
logDiag := getFloats(n, false)
defer putFloats(logDiag)
sign = 1.0
for i := 0; i < n; i++ {
v := lu.lu.at(i, i)
if v < 0 {
sign *= -1
}
if lu.pivot[i] != i {
sign *= -1
}
logDiag[i] = math.Log(math.Abs(v))
}
return floats.Sum(logDiag), sign
}
// Pivot returns pivot indices that enable the construction of the permutation
// matrix P (see Dense.Permutation). If swaps == nil, then new memory will be
// allocated, otherwise the length of the input must be equal to the size of the
// factorized matrix.
// Pivot will panic if the receiver does not contain a factorization.
func (lu *LU) Pivot(swaps []int) []int {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if swaps == nil {
swaps = make([]int, n)
}
if len(swaps) != n {
panic(badSliceLength)
}
// Perform the inverse of the row swaps in order to find the final
// row swap position.
for i := range swaps {
swaps[i] = i
}
for i := n - 1; i >= 0; i-- {
v := lu.pivot[i]
swaps[i], swaps[v] = swaps[v], swaps[i]
}
return swaps
}
// RankOne updates an LU factorization as if a rank-one update had been applied to
// the original matrix A, storing the result into the receiver. That is, if in
// the original LU decomposition P * L * U = A, in the updated decomposition
// P * L * U = A + alpha * x * yᵀ.
// RankOne will panic if orig does not contain a factorization.
func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
if !orig.isValid() {
panic(badLU)
}
// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
_, n := orig.lu.Dims()
if r, c := x.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if r, c := y.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if orig != lu {
if lu.isZero() {
if cap(lu.pivot) < n {
lu.pivot = make([]int, n)
}
lu.pivot = lu.pivot[:n]
if lu.lu == nil {
lu.lu = NewDense(n, n, nil)
} else {
lu.lu.reuseAsNonZeroed(n, n)
}
} else if len(lu.pivot) != n {
panic(ErrShape)
}
copy(lu.pivot, orig.pivot)
lu.lu.Copy(orig.lu)
}
xs := getFloats(n, false)
defer putFloats(xs)
ys := getFloats(n, false)
defer putFloats(ys)
for i := 0; i < n; i++ {
xs[i] = x.AtVec(i)
ys[i] = y.AtVec(i)
}
// Adjust for the pivoting in the LU factorization
for i, v := range lu.pivot {
xs[i], xs[v] = xs[v], xs[i]
}
lum := lu.lu.mat
omega := alpha
for j := 0; j < n; j++ {
ujj := lum.Data[j*lum.Stride+j]
ys[j] /= ujj
theta := 1 + xs[j]*ys[j]*omega
beta := omega * ys[j] / theta
gamma := omega * xs[j]
omega -= beta * gamma
lum.Data[j*lum.Stride+j] *= theta
for i := j + 1; i < n; i++ {
xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
tmp := ys[i]
ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
lum.Data[i*lum.Stride+j] += beta * xs[i]
lum.Data[j*lum.Stride+i] += gamma * tmp
}
}
lu.updateCond(-1, CondNorm)
}
// LTo extracts the lower triangular matrix from an LU factorization.
//
// If dst is empty, LTo will resize dst to be a lower-triangular n×n matrix.
// When dst is non-empty, LTo will panic if dst is not n×n or not Lower.
// LTo will also panic if the receiver does not contain a successful
// factorization.
func (lu *LU) LTo(dst *TriDense) *TriDense {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst.IsEmpty() {
dst.ReuseAsTri(n, Lower)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Lower {
panic(ErrTriangle)
}
}
// Extract the lower triangular elements.
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
}
}
// Set ones on the diagonal.
for i := 0; i < n; i++ {
dst.mat.Data[i*dst.mat.Stride+i] = 1
}
return dst
}
// UTo extracts the upper triangular matrix from an LU factorization.
//
// If dst is empty, UTo will resize dst to be an upper-triangular n×n matrix.
// When dst is non-empty, UTo will panic if dst is not n×n or not Upper.
// UTo will also panic if the receiver does not contain a successful
// factorization.
func (lu *LU) UTo(dst *TriDense) {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst.IsEmpty() {
dst.ReuseAsTri(n, Upper)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Upper {
panic(ErrTriangle)
}
}
// Extract the upper triangular elements.
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
}
}
}
// Permutation constructs an r×r permutation matrix with the given row swaps.
// A permutation matrix has exactly one element equal to one in each row and column
// and all other elements equal to zero. swaps[i] specifies the row with which
// i will be swapped, which is equivalent to the non-zero column of row i.
func (m *Dense) Permutation(r int, swaps []int) {
m.reuseAsNonZeroed(r, r)
for i := 0; i < r; i++ {
zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+r])
v := swaps[i]
if v < 0 || v >= r {
panic(ErrRowAccess)
}
m.mat.Data[i*m.mat.Stride+v] = 1
}
}
// SolveTo solves a system of linear equations using the LU decomposition of a matrix.
// It computes
// A * X = B if trans == false
// Aᵀ * X = B if trans == true
// In both cases, A is represented in LU factorized form, and the matrix X is
// stored into dst.
//
// If A is singular or near-singular a Condition error is returned. See
// the documentation for Condition for more information.
// SolveTo will panic if the receiver does not contain a factorization.
func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
br, bc := b.Dims()
if br != n {
panic(ErrShape)
}
// TODO(btracey): Should test the condition number instead of testing that
// the determinant is exactly zero.
if lu.Det() == 0 {
return Condition(math.Inf(1))
}
dst.reuseAsNonZeroed(n, bc)
bU, _ := untranspose(b)
var restore func()
if dst == bU {
dst, restore = dst.isolatedWorkspace(bU)
defer restore()
} else if rm, ok := bU.(RawMatrixer); ok {
dst.checkOverlap(rm.RawMatrix())
}
dst.Copy(b)
t := blas.NoTrans
if trans {
t = blas.Trans
}
lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.pivot)
if lu.cond > ConditionTolerance {
return Condition(lu.cond)
}
return nil
}
// SolveVecTo solves a system of linear equations using the LU decomposition of a matrix.
// It computes
// A * x = b if trans == false
// Aᵀ * x = b if trans == true
// In both cases, A is represented in LU factorized form, and the vector x is
// stored into dst.
//
// If A is singular or near-singular a Condition error is returned. See
// the documentation for Condition for more information.
// SolveVecTo will panic if the receiver does not contain a factorization.
func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
switch rv := b.(type) {
default:
dst.reuseAsNonZeroed(n)
return lu.SolveTo(dst.asDense(), trans, b)
case RawVectorer:
if dst != b {
dst.checkOverlap(rv.RawVector())
}
// TODO(btracey): Should test the condition number instead of testing that
// the determinant is exactly zero.
if lu.Det() == 0 {
return Condition(math.Inf(1))
}
dst.reuseAsNonZeroed(n)
var restore func()
if dst == b {
dst, restore = dst.isolatedWorkspace(b)
defer restore()
}
dst.CopyVec(b)
vMat := blas64.General{
Rows: n,
Cols: 1,
Stride: dst.mat.Inc,
Data: dst.mat.Data,
}
t := blas.NoTrans
if trans {
t = blas.Trans
}
lapack64.Getrs(t, lu.lu.mat, vMat, lu.pivot)
if lu.cond > ConditionTolerance {
return Condition(lu.cond)
}
return nil
}
}