k3s/vendor/gonum.org/v1/gonum/mat/shadow.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

243 lines
5.7 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import "gonum.org/v1/gonum/blas/blas64"
// checkOverlap returns false if the receiver does not overlap data elements
// referenced by the parameter and panics otherwise.
//
// checkOverlap methods return a boolean to allow the check call to be added to a
// boolean expression, making use of short-circuit operators.
func checkOverlap(a, b blas64.General) bool {
if cap(a.Data) == 0 || cap(b.Data) == 0 {
return false
}
off := offset(a.Data[:1], b.Data[:1])
if off == 0 {
// At least one element overlaps.
if a.Cols == b.Cols && a.Rows == b.Rows && a.Stride == b.Stride {
panic(regionIdentity)
}
panic(regionOverlap)
}
if off > 0 && len(a.Data) <= off {
// We know a is completely before b.
return false
}
if off < 0 && len(b.Data) <= -off {
// We know a is completely after b.
return false
}
if a.Stride != b.Stride && a.Stride != 1 && b.Stride != 1 {
// Too hard, so assume the worst; if either stride
// is one it will be caught in rectanglesOverlap.
panic(mismatchedStrides)
}
if off < 0 {
off = -off
a.Cols, b.Cols = b.Cols, a.Cols
}
if rectanglesOverlap(off, a.Cols, b.Cols, min(a.Stride, b.Stride)) {
panic(regionOverlap)
}
return false
}
func (m *Dense) checkOverlap(a blas64.General) bool {
return checkOverlap(m.RawMatrix(), a)
}
func (m *Dense) checkOverlapMatrix(a Matrix) bool {
if m == a {
return false
}
var amat blas64.General
switch ar := a.(type) {
default:
return false
case RawMatrixer:
amat = ar.RawMatrix()
case RawSymmetricer:
amat = generalFromSymmetric(ar.RawSymmetric())
case RawSymBander:
amat = generalFromSymmetricBand(ar.RawSymBand())
case RawTriangular:
amat = generalFromTriangular(ar.RawTriangular())
case RawVectorer:
r, c := a.Dims()
amat = generalFromVector(ar.RawVector(), r, c)
}
return m.checkOverlap(amat)
}
func (s *SymDense) checkOverlap(a blas64.General) bool {
return checkOverlap(generalFromSymmetric(s.RawSymmetric()), a)
}
func (s *SymDense) checkOverlapMatrix(a Matrix) bool {
if s == a {
return false
}
var amat blas64.General
switch ar := a.(type) {
default:
return false
case RawMatrixer:
amat = ar.RawMatrix()
case RawSymmetricer:
amat = generalFromSymmetric(ar.RawSymmetric())
case RawSymBander:
amat = generalFromSymmetricBand(ar.RawSymBand())
case RawTriangular:
amat = generalFromTriangular(ar.RawTriangular())
case RawVectorer:
r, c := a.Dims()
amat = generalFromVector(ar.RawVector(), r, c)
}
return s.checkOverlap(amat)
}
// generalFromSymmetric returns a blas64.General with the backing
// data and dimensions of a.
func generalFromSymmetric(a blas64.Symmetric) blas64.General {
return blas64.General{
Rows: a.N,
Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
}
func (t *TriDense) checkOverlap(a blas64.General) bool {
return checkOverlap(generalFromTriangular(t.RawTriangular()), a)
}
func (t *TriDense) checkOverlapMatrix(a Matrix) bool {
if t == a {
return false
}
var amat blas64.General
switch ar := a.(type) {
default:
return false
case RawMatrixer:
amat = ar.RawMatrix()
case RawSymmetricer:
amat = generalFromSymmetric(ar.RawSymmetric())
case RawSymBander:
amat = generalFromSymmetricBand(ar.RawSymBand())
case RawTriangular:
amat = generalFromTriangular(ar.RawTriangular())
case RawVectorer:
r, c := a.Dims()
amat = generalFromVector(ar.RawVector(), r, c)
}
return t.checkOverlap(amat)
}
// generalFromTriangular returns a blas64.General with the backing
// data and dimensions of a.
func generalFromTriangular(a blas64.Triangular) blas64.General {
return blas64.General{
Rows: a.N,
Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
}
func (v *VecDense) checkOverlap(a blas64.Vector) bool {
mat := v.mat
if cap(mat.Data) == 0 || cap(a.Data) == 0 {
return false
}
off := offset(mat.Data[:1], a.Data[:1])
if off == 0 {
// At least one element overlaps.
if mat.Inc == a.Inc && len(mat.Data) == len(a.Data) {
panic(regionIdentity)
}
panic(regionOverlap)
}
if off > 0 && len(mat.Data) <= off {
// We know v is completely before a.
return false
}
if off < 0 && len(a.Data) <= -off {
// We know v is completely after a.
return false
}
if mat.Inc != a.Inc && mat.Inc != 1 && a.Inc != 1 {
// Too hard, so assume the worst; if either
// increment is one it will be caught below.
panic(mismatchedStrides)
}
inc := min(mat.Inc, a.Inc)
if inc == 1 || off&inc == 0 {
panic(regionOverlap)
}
return false
}
// generalFromVector returns a blas64.General with the backing
// data and dimensions of a.
func generalFromVector(a blas64.Vector, r, c int) blas64.General {
return blas64.General{
Rows: r,
Cols: c,
Stride: a.Inc,
Data: a.Data,
}
}
func (s *SymBandDense) checkOverlap(a blas64.General) bool {
return checkOverlap(generalFromSymmetricBand(s.RawSymBand()), a)
}
func (s *SymBandDense) checkOverlapMatrix(a Matrix) bool {
if s == a {
return false
}
var amat blas64.General
switch ar := a.(type) {
default:
return false
case RawMatrixer:
amat = ar.RawMatrix()
case RawSymmetricer:
amat = generalFromSymmetric(ar.RawSymmetric())
case RawSymBander:
amat = generalFromSymmetricBand(ar.RawSymBand())
case RawTriangular:
amat = generalFromTriangular(ar.RawTriangular())
case RawVectorer:
r, c := a.Dims()
amat = generalFromVector(ar.RawVector(), r, c)
}
return s.checkOverlap(amat)
}
// generalFromSymmetricBand returns a blas64.General with the backing
// data and dimensions of a.
func generalFromSymmetricBand(a blas64.SymmetricBand) blas64.General {
return blas64.General{
Rows: a.N,
Cols: a.K + 1,
Data: a.Data,
Stride: a.Stride,
}
}