mirror of
https://github.com/k3s-io/k3s.git
synced 2024-06-07 19:41:36 +00:00
e8381db778
* Update Kubernetes to v1.21.0 * Update to golang v1.16.2 * Update dependent modules to track with upstream * Switch to upstream flannel * Track changes to upstream cloud-controller-manager and FeatureGates Signed-off-by: Brad Davidson <brad.davidson@rancher.com>
1294 lines
38 KiB
Go
1294 lines
38 KiB
Go
// Copyright 2017 The Bazel Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package starlark provides a Starlark interpreter.
|
|
//
|
|
// Starlark values are represented by the Value interface.
|
|
// The following built-in Value types are known to the evaluator:
|
|
//
|
|
// NoneType -- NoneType
|
|
// Bool -- bool
|
|
// Int -- int
|
|
// Float -- float
|
|
// String -- string
|
|
// *List -- list
|
|
// Tuple -- tuple
|
|
// *Dict -- dict
|
|
// *Set -- set
|
|
// *Function -- function (implemented in Starlark)
|
|
// *Builtin -- builtin_function_or_method (function or method implemented in Go)
|
|
//
|
|
// Client applications may define new data types that satisfy at least
|
|
// the Value interface. Such types may provide additional operations by
|
|
// implementing any of these optional interfaces:
|
|
//
|
|
// Callable -- value is callable like a function
|
|
// Comparable -- value defines its own comparison operations
|
|
// Iterable -- value is iterable using 'for' loops
|
|
// Sequence -- value is iterable sequence of known length
|
|
// Indexable -- value is sequence with efficient random access
|
|
// Mapping -- value maps from keys to values, like a dictionary
|
|
// HasBinary -- value defines binary operations such as * and +
|
|
// HasAttrs -- value has readable fields or methods x.f
|
|
// HasSetField -- value has settable fields x.f
|
|
// HasSetIndex -- value supports element update using x[i]=y
|
|
// HasSetKey -- value supports map update using x[k]=v
|
|
// HasUnary -- value defines unary operations such as + and -
|
|
//
|
|
// Client applications may also define domain-specific functions in Go
|
|
// and make them available to Starlark programs. Use NewBuiltin to
|
|
// construct a built-in value that wraps a Go function. The
|
|
// implementation of the Go function may use UnpackArgs to make sense of
|
|
// the positional and keyword arguments provided by the caller.
|
|
//
|
|
// Starlark's None value is not equal to Go's nil. Go's nil is not a legal
|
|
// Starlark value, but the compiler will not stop you from converting nil
|
|
// to Value. Be careful to avoid allowing Go nil values to leak into
|
|
// Starlark data structures.
|
|
//
|
|
// The Compare operation requires two arguments of the same
|
|
// type, but this constraint cannot be expressed in Go's type system.
|
|
// (This is the classic "binary method problem".)
|
|
// So, each Value type's CompareSameType method is a partial function
|
|
// that compares a value only against others of the same type.
|
|
// Use the package's standalone Compare (or Equal) function to compare
|
|
// an arbitrary pair of values.
|
|
//
|
|
// To parse and evaluate a Starlark source file, use ExecFile. The Eval
|
|
// function evaluates a single expression. All evaluator functions
|
|
// require a Thread parameter which defines the "thread-local storage"
|
|
// of a Starlark thread and may be used to plumb application state
|
|
// through Starlark code and into callbacks. When evaluation fails it
|
|
// returns an EvalError from which the application may obtain a
|
|
// backtrace of active Starlark calls.
|
|
//
|
|
package starlark // import "go.starlark.net/starlark"
|
|
|
|
// This file defines the data types of Starlark and their basic operations.
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/big"
|
|
"reflect"
|
|
"strconv"
|
|
"strings"
|
|
"unicode/utf8"
|
|
|
|
"go.starlark.net/internal/compile"
|
|
"go.starlark.net/syntax"
|
|
)
|
|
|
|
// Value is a value in the Starlark interpreter.
|
|
type Value interface {
|
|
// String returns the string representation of the value.
|
|
// Starlark string values are quoted as if by Python's repr.
|
|
String() string
|
|
|
|
// Type returns a short string describing the value's type.
|
|
Type() string
|
|
|
|
// Freeze causes the value, and all values transitively
|
|
// reachable from it through collections and closures, to be
|
|
// marked as frozen. All subsequent mutations to the data
|
|
// structure through this API will fail dynamically, making the
|
|
// data structure immutable and safe for publishing to other
|
|
// Starlark interpreters running concurrently.
|
|
Freeze()
|
|
|
|
// Truth returns the truth value of an object.
|
|
Truth() Bool
|
|
|
|
// Hash returns a function of x such that Equals(x, y) => Hash(x) == Hash(y).
|
|
// Hash may fail if the value's type is not hashable, or if the value
|
|
// contains a non-hashable value. The hash is used only by dictionaries and
|
|
// is not exposed to the Starlark program.
|
|
Hash() (uint32, error)
|
|
}
|
|
|
|
// A Comparable is a value that defines its own equivalence relation and
|
|
// perhaps ordered comparisons.
|
|
type Comparable interface {
|
|
Value
|
|
// CompareSameType compares one value to another of the same Type().
|
|
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
|
|
// CompareSameType returns an error if an ordered comparison was
|
|
// requested for a type that does not support it.
|
|
//
|
|
// Implementations that recursively compare subcomponents of
|
|
// the value should use the CompareDepth function, not Compare, to
|
|
// avoid infinite recursion on cyclic structures.
|
|
//
|
|
// The depth parameter is used to bound comparisons of cyclic
|
|
// data structures. Implementations should decrement depth
|
|
// before calling CompareDepth and should return an error if depth
|
|
// < 1.
|
|
//
|
|
// Client code should not call this method. Instead, use the
|
|
// standalone Compare or Equals functions, which are defined for
|
|
// all pairs of operands.
|
|
CompareSameType(op syntax.Token, y Value, depth int) (bool, error)
|
|
}
|
|
|
|
var (
|
|
_ Comparable = None
|
|
_ Comparable = Int{}
|
|
_ Comparable = False
|
|
_ Comparable = Float(0)
|
|
_ Comparable = String("")
|
|
_ Comparable = (*Dict)(nil)
|
|
_ Comparable = (*List)(nil)
|
|
_ Comparable = Tuple(nil)
|
|
_ Comparable = (*Set)(nil)
|
|
)
|
|
|
|
// A Callable value f may be the operand of a function call, f(x).
|
|
//
|
|
// Clients should use the Call function, never the CallInternal method.
|
|
type Callable interface {
|
|
Value
|
|
Name() string
|
|
CallInternal(thread *Thread, args Tuple, kwargs []Tuple) (Value, error)
|
|
}
|
|
|
|
type callableWithPosition interface {
|
|
Callable
|
|
Position() syntax.Position
|
|
}
|
|
|
|
var (
|
|
_ Callable = (*Builtin)(nil)
|
|
_ Callable = (*Function)(nil)
|
|
_ callableWithPosition = (*Function)(nil)
|
|
)
|
|
|
|
// An Iterable abstracts a sequence of values.
|
|
// An iterable value may be iterated over by a 'for' loop or used where
|
|
// any other Starlark iterable is allowed. Unlike a Sequence, the length
|
|
// of an Iterable is not necessarily known in advance of iteration.
|
|
type Iterable interface {
|
|
Value
|
|
Iterate() Iterator // must be followed by call to Iterator.Done
|
|
}
|
|
|
|
// A Sequence is a sequence of values of known length.
|
|
type Sequence interface {
|
|
Iterable
|
|
Len() int
|
|
}
|
|
|
|
var (
|
|
_ Sequence = (*Dict)(nil)
|
|
_ Sequence = (*Set)(nil)
|
|
)
|
|
|
|
// An Indexable is a sequence of known length that supports efficient random access.
|
|
// It is not necessarily iterable.
|
|
type Indexable interface {
|
|
Value
|
|
Index(i int) Value // requires 0 <= i < Len()
|
|
Len() int
|
|
}
|
|
|
|
// A Sliceable is a sequence that can be cut into pieces with the slice operator (x[i:j:step]).
|
|
//
|
|
// All native indexable objects are sliceable.
|
|
// This is a separate interface for backwards-compatibility.
|
|
type Sliceable interface {
|
|
Indexable
|
|
// For positive strides (step > 0), 0 <= start <= end <= n.
|
|
// For negative strides (step < 0), -1 <= end <= start < n.
|
|
// The caller must ensure that the start and end indices are valid
|
|
// and that step is non-zero.
|
|
Slice(start, end, step int) Value
|
|
}
|
|
|
|
// A HasSetIndex is an Indexable value whose elements may be assigned (x[i] = y).
|
|
//
|
|
// The implementation should not add Len to a negative index as the
|
|
// evaluator does this before the call.
|
|
type HasSetIndex interface {
|
|
Indexable
|
|
SetIndex(index int, v Value) error
|
|
}
|
|
|
|
var (
|
|
_ HasSetIndex = (*List)(nil)
|
|
_ Indexable = Tuple(nil)
|
|
_ Indexable = String("")
|
|
_ Sliceable = Tuple(nil)
|
|
_ Sliceable = String("")
|
|
_ Sliceable = (*List)(nil)
|
|
)
|
|
|
|
// An Iterator provides a sequence of values to the caller.
|
|
//
|
|
// The caller must call Done when the iterator is no longer needed.
|
|
// Operations that modify a sequence will fail if it has active iterators.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// iter := iterable.Iterator()
|
|
// defer iter.Done()
|
|
// var x Value
|
|
// for iter.Next(&x) {
|
|
// ...
|
|
// }
|
|
//
|
|
type Iterator interface {
|
|
// If the iterator is exhausted, Next returns false.
|
|
// Otherwise it sets *p to the current element of the sequence,
|
|
// advances the iterator, and returns true.
|
|
Next(p *Value) bool
|
|
Done()
|
|
}
|
|
|
|
// A Mapping is a mapping from keys to values, such as a dictionary.
|
|
//
|
|
// If a type satisfies both Mapping and Iterable, the iterator yields
|
|
// the keys of the mapping.
|
|
type Mapping interface {
|
|
Value
|
|
// Get returns the value corresponding to the specified key,
|
|
// or !found if the mapping does not contain the key.
|
|
//
|
|
// Get also defines the behavior of "v in mapping".
|
|
// The 'in' operator reports the 'found' component, ignoring errors.
|
|
Get(Value) (v Value, found bool, err error)
|
|
}
|
|
|
|
// An IterableMapping is a mapping that supports key enumeration.
|
|
type IterableMapping interface {
|
|
Mapping
|
|
Iterate() Iterator // see Iterable interface
|
|
Items() []Tuple // a new slice containing all key/value pairs
|
|
}
|
|
|
|
var _ IterableMapping = (*Dict)(nil)
|
|
|
|
// A HasSetKey supports map update using x[k]=v syntax, like a dictionary.
|
|
type HasSetKey interface {
|
|
Mapping
|
|
SetKey(k, v Value) error
|
|
}
|
|
|
|
var _ HasSetKey = (*Dict)(nil)
|
|
|
|
// A HasBinary value may be used as either operand of these binary operators:
|
|
// + - * / // % in not in | & ^ << >>
|
|
//
|
|
// The Side argument indicates whether the receiver is the left or right operand.
|
|
//
|
|
// An implementation may decline to handle an operation by returning (nil, nil).
|
|
// For this reason, clients should always call the standalone Binary(op, x, y)
|
|
// function rather than calling the method directly.
|
|
type HasBinary interface {
|
|
Value
|
|
Binary(op syntax.Token, y Value, side Side) (Value, error)
|
|
}
|
|
|
|
type Side bool
|
|
|
|
const (
|
|
Left Side = false
|
|
Right Side = true
|
|
)
|
|
|
|
// A HasUnary value may be used as the operand of these unary operators:
|
|
// + - ~
|
|
//
|
|
// An implementation may decline to handle an operation by returning (nil, nil).
|
|
// For this reason, clients should always call the standalone Unary(op, x)
|
|
// function rather than calling the method directly.
|
|
type HasUnary interface {
|
|
Value
|
|
Unary(op syntax.Token) (Value, error)
|
|
}
|
|
|
|
// A HasAttrs value has fields or methods that may be read by a dot expression (y = x.f).
|
|
// Attribute names may be listed using the built-in 'dir' function.
|
|
//
|
|
// For implementation convenience, a result of (nil, nil) from Attr is
|
|
// interpreted as a "no such field or method" error. Implementations are
|
|
// free to return a more precise error.
|
|
type HasAttrs interface {
|
|
Value
|
|
Attr(name string) (Value, error) // returns (nil, nil) if attribute not present
|
|
AttrNames() []string // callers must not modify the result.
|
|
}
|
|
|
|
var (
|
|
_ HasAttrs = String("")
|
|
_ HasAttrs = new(List)
|
|
_ HasAttrs = new(Dict)
|
|
_ HasAttrs = new(Set)
|
|
)
|
|
|
|
// A HasSetField value has fields that may be written by a dot expression (x.f = y).
|
|
//
|
|
// An implementation of SetField may return a NoSuchAttrError,
|
|
// in which case the runtime may augment the error message to
|
|
// warn of possible misspelling.
|
|
type HasSetField interface {
|
|
HasAttrs
|
|
SetField(name string, val Value) error
|
|
}
|
|
|
|
// A NoSuchAttrError may be returned by an implementation of
|
|
// HasAttrs.Attr or HasSetField.SetField to indicate that no such field
|
|
// exists. In that case the runtime may augment the error message to
|
|
// warn of possible misspelling.
|
|
type NoSuchAttrError string
|
|
|
|
func (e NoSuchAttrError) Error() string { return string(e) }
|
|
|
|
// NoneType is the type of None. Its only legal value is None.
|
|
// (We represent it as a number, not struct{}, so that None may be constant.)
|
|
type NoneType byte
|
|
|
|
const None = NoneType(0)
|
|
|
|
func (NoneType) String() string { return "None" }
|
|
func (NoneType) Type() string { return "NoneType" }
|
|
func (NoneType) Freeze() {} // immutable
|
|
func (NoneType) Truth() Bool { return False }
|
|
func (NoneType) Hash() (uint32, error) { return 0, nil }
|
|
func (NoneType) CompareSameType(op syntax.Token, y Value, depth int) (bool, error) {
|
|
return threeway(op, 0), nil
|
|
}
|
|
|
|
// Bool is the type of a Starlark bool.
|
|
type Bool bool
|
|
|
|
const (
|
|
False Bool = false
|
|
True Bool = true
|
|
)
|
|
|
|
func (b Bool) String() string {
|
|
if b {
|
|
return "True"
|
|
} else {
|
|
return "False"
|
|
}
|
|
}
|
|
func (b Bool) Type() string { return "bool" }
|
|
func (b Bool) Freeze() {} // immutable
|
|
func (b Bool) Truth() Bool { return b }
|
|
func (b Bool) Hash() (uint32, error) { return uint32(b2i(bool(b))), nil }
|
|
func (x Bool) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(Bool)
|
|
return threeway(op, b2i(bool(x))-b2i(bool(y))), nil
|
|
}
|
|
|
|
// Float is the type of a Starlark float.
|
|
type Float float64
|
|
|
|
func (f Float) String() string { return strconv.FormatFloat(float64(f), 'g', 6, 64) }
|
|
func (f Float) Type() string { return "float" }
|
|
func (f Float) Freeze() {} // immutable
|
|
func (f Float) Truth() Bool { return f != 0.0 }
|
|
func (f Float) Hash() (uint32, error) {
|
|
// Equal float and int values must yield the same hash.
|
|
// TODO(adonovan): opt: if f is non-integral, and thus not equal
|
|
// to any Int, we can avoid the Int conversion and use a cheaper hash.
|
|
if isFinite(float64(f)) {
|
|
return finiteFloatToInt(f).Hash()
|
|
}
|
|
return 1618033, nil // NaN, +/-Inf
|
|
}
|
|
|
|
func floor(f Float) Float { return Float(math.Floor(float64(f))) }
|
|
|
|
// isFinite reports whether f represents a finite rational value.
|
|
// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
|
|
func isFinite(f float64) bool {
|
|
return math.Abs(f) <= math.MaxFloat64
|
|
}
|
|
|
|
func (x Float) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(Float)
|
|
switch op {
|
|
case syntax.EQL:
|
|
return x == y, nil
|
|
case syntax.NEQ:
|
|
return x != y, nil
|
|
case syntax.LE:
|
|
return x <= y, nil
|
|
case syntax.LT:
|
|
return x < y, nil
|
|
case syntax.GE:
|
|
return x >= y, nil
|
|
case syntax.GT:
|
|
return x > y, nil
|
|
}
|
|
panic(op)
|
|
}
|
|
|
|
func (f Float) rational() *big.Rat { return new(big.Rat).SetFloat64(float64(f)) }
|
|
|
|
// AsFloat returns the float64 value closest to x.
|
|
// The f result is undefined if x is not a float or int.
|
|
func AsFloat(x Value) (f float64, ok bool) {
|
|
switch x := x.(type) {
|
|
case Float:
|
|
return float64(x), true
|
|
case Int:
|
|
return float64(x.Float()), true
|
|
}
|
|
return 0, false
|
|
}
|
|
|
|
func (x Float) Mod(y Float) Float { return Float(math.Mod(float64(x), float64(y))) }
|
|
|
|
// Unary implements the operations +float and -float.
|
|
func (f Float) Unary(op syntax.Token) (Value, error) {
|
|
switch op {
|
|
case syntax.MINUS:
|
|
return -f, nil
|
|
case syntax.PLUS:
|
|
return +f, nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
// String is the type of a Starlark string.
|
|
//
|
|
// A String encapsulates an an immutable sequence of bytes,
|
|
// but strings are not directly iterable. Instead, iterate
|
|
// over the result of calling one of these four methods:
|
|
// codepoints, codepoint_ords, elems, elem_ords.
|
|
//
|
|
// Warning: the contract of the Value interface's String method is that
|
|
// it returns the value printed in Starlark notation,
|
|
// so s.String() or fmt.Sprintf("%s", s) returns a quoted string.
|
|
// Use string(s) or s.GoString() or fmt.Sprintf("%#v", s) to obtain the raw contents
|
|
// of a Starlark string as a Go string.
|
|
type String string
|
|
|
|
func (s String) String() string { return strconv.Quote(string(s)) }
|
|
func (s String) GoString() string { return string(s) }
|
|
func (s String) Type() string { return "string" }
|
|
func (s String) Freeze() {} // immutable
|
|
func (s String) Truth() Bool { return len(s) > 0 }
|
|
func (s String) Hash() (uint32, error) { return hashString(string(s)), nil }
|
|
func (s String) Len() int { return len(s) } // bytes
|
|
func (s String) Index(i int) Value { return s[i : i+1] }
|
|
|
|
func (s String) Slice(start, end, step int) Value {
|
|
if step == 1 {
|
|
return s[start:end]
|
|
}
|
|
|
|
sign := signum(step)
|
|
var str []byte
|
|
for i := start; signum(end-i) == sign; i += step {
|
|
str = append(str, s[i])
|
|
}
|
|
return String(str)
|
|
}
|
|
|
|
func (s String) Attr(name string) (Value, error) { return builtinAttr(s, name, stringMethods) }
|
|
func (s String) AttrNames() []string { return builtinAttrNames(stringMethods) }
|
|
|
|
func (x String) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(String)
|
|
return threeway(op, strings.Compare(string(x), string(y))), nil
|
|
}
|
|
|
|
func AsString(x Value) (string, bool) { v, ok := x.(String); return string(v), ok }
|
|
|
|
// A stringIterable is an iterable whose iterator yields a sequence of
|
|
// either Unicode code points or elements (bytes),
|
|
// either numerically or as successive substrings.
|
|
type stringIterable struct {
|
|
s String
|
|
ords bool
|
|
codepoints bool
|
|
}
|
|
|
|
var _ Iterable = (*stringIterable)(nil)
|
|
|
|
func (si stringIterable) String() string {
|
|
var etype string
|
|
if si.codepoints {
|
|
etype = "codepoint"
|
|
} else {
|
|
etype = "elem"
|
|
}
|
|
if si.ords {
|
|
return si.s.String() + "." + etype + "_ords()"
|
|
} else {
|
|
return si.s.String() + "." + etype + "s()"
|
|
}
|
|
}
|
|
func (si stringIterable) Type() string {
|
|
if si.codepoints {
|
|
return "codepoints"
|
|
} else {
|
|
return "elems"
|
|
}
|
|
}
|
|
func (si stringIterable) Freeze() {} // immutable
|
|
func (si stringIterable) Truth() Bool { return True }
|
|
func (si stringIterable) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable: %s", si.Type()) }
|
|
func (si stringIterable) Iterate() Iterator { return &stringIterator{si, 0} }
|
|
|
|
type stringIterator struct {
|
|
si stringIterable
|
|
i int
|
|
}
|
|
|
|
func (it *stringIterator) Next(p *Value) bool {
|
|
s := it.si.s[it.i:]
|
|
if s == "" {
|
|
return false
|
|
}
|
|
if it.si.codepoints {
|
|
r, sz := utf8.DecodeRuneInString(string(s))
|
|
if !it.si.ords {
|
|
*p = s[:sz]
|
|
} else {
|
|
*p = MakeInt(int(r))
|
|
}
|
|
it.i += sz
|
|
} else {
|
|
b := int(s[0])
|
|
if !it.si.ords {
|
|
*p = s[:1]
|
|
} else {
|
|
*p = MakeInt(b)
|
|
}
|
|
it.i += 1
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (*stringIterator) Done() {}
|
|
|
|
// A Function is a function defined by a Starlark def statement or lambda expression.
|
|
// The initialization behavior of a Starlark module is also represented by a Function.
|
|
type Function struct {
|
|
funcode *compile.Funcode
|
|
module *module
|
|
defaults Tuple
|
|
freevars Tuple
|
|
}
|
|
|
|
// A module is the dynamic counterpart to a Program.
|
|
// All functions in the same program share a module.
|
|
type module struct {
|
|
program *compile.Program
|
|
predeclared StringDict
|
|
globals []Value
|
|
constants []Value
|
|
}
|
|
|
|
// makeGlobalDict returns a new, unfrozen StringDict containing all global
|
|
// variables so far defined in the module.
|
|
func (m *module) makeGlobalDict() StringDict {
|
|
r := make(StringDict, len(m.program.Globals))
|
|
for i, id := range m.program.Globals {
|
|
if v := m.globals[i]; v != nil {
|
|
r[id.Name] = v
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
func (fn *Function) Name() string { return fn.funcode.Name } // "lambda" for anonymous functions
|
|
func (fn *Function) Doc() string { return fn.funcode.Doc }
|
|
func (fn *Function) Hash() (uint32, error) { return hashString(fn.funcode.Name), nil }
|
|
func (fn *Function) Freeze() { fn.defaults.Freeze(); fn.freevars.Freeze() }
|
|
func (fn *Function) String() string { return toString(fn) }
|
|
func (fn *Function) Type() string { return "function" }
|
|
func (fn *Function) Truth() Bool { return true }
|
|
|
|
// Globals returns a new, unfrozen StringDict containing all global
|
|
// variables so far defined in the function's module.
|
|
func (fn *Function) Globals() StringDict { return fn.module.makeGlobalDict() }
|
|
|
|
func (fn *Function) Position() syntax.Position { return fn.funcode.Pos }
|
|
func (fn *Function) NumParams() int { return fn.funcode.NumParams }
|
|
func (fn *Function) NumKwonlyParams() int { return fn.funcode.NumKwonlyParams }
|
|
|
|
// Param returns the name and position of the ith parameter,
|
|
// where 0 <= i < NumParams().
|
|
// The *args and **kwargs parameters are at the end
|
|
// even if there were optional parameters after *args.
|
|
func (fn *Function) Param(i int) (string, syntax.Position) {
|
|
if i >= fn.NumParams() {
|
|
panic(i)
|
|
}
|
|
id := fn.funcode.Locals[i]
|
|
return id.Name, id.Pos
|
|
}
|
|
func (fn *Function) HasVarargs() bool { return fn.funcode.HasVarargs }
|
|
func (fn *Function) HasKwargs() bool { return fn.funcode.HasKwargs }
|
|
|
|
// A Builtin is a function implemented in Go.
|
|
type Builtin struct {
|
|
name string
|
|
fn func(thread *Thread, fn *Builtin, args Tuple, kwargs []Tuple) (Value, error)
|
|
recv Value // for bound methods (e.g. "".startswith)
|
|
}
|
|
|
|
func (b *Builtin) Name() string { return b.name }
|
|
func (b *Builtin) Freeze() {
|
|
if b.recv != nil {
|
|
b.recv.Freeze()
|
|
}
|
|
}
|
|
func (b *Builtin) Hash() (uint32, error) {
|
|
h := hashString(b.name)
|
|
if b.recv != nil {
|
|
h ^= 5521
|
|
}
|
|
return h, nil
|
|
}
|
|
func (b *Builtin) Receiver() Value { return b.recv }
|
|
func (b *Builtin) String() string { return toString(b) }
|
|
func (b *Builtin) Type() string { return "builtin_function_or_method" }
|
|
func (b *Builtin) CallInternal(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) {
|
|
return b.fn(thread, b, args, kwargs)
|
|
}
|
|
func (b *Builtin) Truth() Bool { return true }
|
|
|
|
// NewBuiltin returns a new 'builtin_function_or_method' value with the specified name
|
|
// and implementation. It compares unequal with all other values.
|
|
func NewBuiltin(name string, fn func(thread *Thread, fn *Builtin, args Tuple, kwargs []Tuple) (Value, error)) *Builtin {
|
|
return &Builtin{name: name, fn: fn}
|
|
}
|
|
|
|
// BindReceiver returns a new Builtin value representing a method
|
|
// closure, that is, a built-in function bound to a receiver value.
|
|
//
|
|
// In the example below, the value of f is the string.index
|
|
// built-in method bound to the receiver value "abc":
|
|
//
|
|
// f = "abc".index; f("a"); f("b")
|
|
//
|
|
// In the common case, the receiver is bound only during the call,
|
|
// but this still results in the creation of a temporary method closure:
|
|
//
|
|
// "abc".index("a")
|
|
//
|
|
func (b *Builtin) BindReceiver(recv Value) *Builtin {
|
|
return &Builtin{name: b.name, fn: b.fn, recv: recv}
|
|
}
|
|
|
|
// A *Dict represents a Starlark dictionary.
|
|
// The zero value of Dict is a valid empty dictionary.
|
|
// If you know the exact final number of entries,
|
|
// it is more efficient to call NewDict.
|
|
type Dict struct {
|
|
ht hashtable
|
|
}
|
|
|
|
// NewDict returns a set with initial space for
|
|
// at least size insertions before rehashing.
|
|
func NewDict(size int) *Dict {
|
|
dict := new(Dict)
|
|
dict.ht.init(size)
|
|
return dict
|
|
}
|
|
|
|
func (d *Dict) Clear() error { return d.ht.clear() }
|
|
func (d *Dict) Delete(k Value) (v Value, found bool, err error) { return d.ht.delete(k) }
|
|
func (d *Dict) Get(k Value) (v Value, found bool, err error) { return d.ht.lookup(k) }
|
|
func (d *Dict) Items() []Tuple { return d.ht.items() }
|
|
func (d *Dict) Keys() []Value { return d.ht.keys() }
|
|
func (d *Dict) Len() int { return int(d.ht.len) }
|
|
func (d *Dict) Iterate() Iterator { return d.ht.iterate() }
|
|
func (d *Dict) SetKey(k, v Value) error { return d.ht.insert(k, v) }
|
|
func (d *Dict) String() string { return toString(d) }
|
|
func (d *Dict) Type() string { return "dict" }
|
|
func (d *Dict) Freeze() { d.ht.freeze() }
|
|
func (d *Dict) Truth() Bool { return d.Len() > 0 }
|
|
func (d *Dict) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: dict") }
|
|
|
|
func (d *Dict) Attr(name string) (Value, error) { return builtinAttr(d, name, dictMethods) }
|
|
func (d *Dict) AttrNames() []string { return builtinAttrNames(dictMethods) }
|
|
|
|
func (x *Dict) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(*Dict)
|
|
switch op {
|
|
case syntax.EQL:
|
|
ok, err := dictsEqual(x, y, depth)
|
|
return ok, err
|
|
case syntax.NEQ:
|
|
ok, err := dictsEqual(x, y, depth)
|
|
return !ok, err
|
|
default:
|
|
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
|
|
}
|
|
}
|
|
|
|
func dictsEqual(x, y *Dict, depth int) (bool, error) {
|
|
if x.Len() != y.Len() {
|
|
return false, nil
|
|
}
|
|
for _, xitem := range x.Items() {
|
|
key, xval := xitem[0], xitem[1]
|
|
|
|
if yval, found, _ := y.Get(key); !found {
|
|
return false, nil
|
|
} else if eq, err := EqualDepth(xval, yval, depth-1); err != nil {
|
|
return false, err
|
|
} else if !eq {
|
|
return false, nil
|
|
}
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
// A *List represents a Starlark list value.
|
|
type List struct {
|
|
elems []Value
|
|
frozen bool
|
|
itercount uint32 // number of active iterators (ignored if frozen)
|
|
}
|
|
|
|
// NewList returns a list containing the specified elements.
|
|
// Callers should not subsequently modify elems.
|
|
func NewList(elems []Value) *List { return &List{elems: elems} }
|
|
|
|
func (l *List) Freeze() {
|
|
if !l.frozen {
|
|
l.frozen = true
|
|
for _, elem := range l.elems {
|
|
elem.Freeze()
|
|
}
|
|
}
|
|
}
|
|
|
|
// checkMutable reports an error if the list should not be mutated.
|
|
// verb+" list" should describe the operation.
|
|
func (l *List) checkMutable(verb string) error {
|
|
if l.frozen {
|
|
return fmt.Errorf("cannot %s frozen list", verb)
|
|
}
|
|
if l.itercount > 0 {
|
|
return fmt.Errorf("cannot %s list during iteration", verb)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (l *List) String() string { return toString(l) }
|
|
func (l *List) Type() string { return "list" }
|
|
func (l *List) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: list") }
|
|
func (l *List) Truth() Bool { return l.Len() > 0 }
|
|
func (l *List) Len() int { return len(l.elems) }
|
|
func (l *List) Index(i int) Value { return l.elems[i] }
|
|
|
|
func (l *List) Slice(start, end, step int) Value {
|
|
if step == 1 {
|
|
elems := append([]Value{}, l.elems[start:end]...)
|
|
return NewList(elems)
|
|
}
|
|
|
|
sign := signum(step)
|
|
var list []Value
|
|
for i := start; signum(end-i) == sign; i += step {
|
|
list = append(list, l.elems[i])
|
|
}
|
|
return NewList(list)
|
|
}
|
|
|
|
func (l *List) Attr(name string) (Value, error) { return builtinAttr(l, name, listMethods) }
|
|
func (l *List) AttrNames() []string { return builtinAttrNames(listMethods) }
|
|
|
|
func (l *List) Iterate() Iterator {
|
|
if !l.frozen {
|
|
l.itercount++
|
|
}
|
|
return &listIterator{l: l}
|
|
}
|
|
|
|
func (x *List) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(*List)
|
|
// It's tempting to check x == y as an optimization here,
|
|
// but wrong because a list containing NaN is not equal to itself.
|
|
return sliceCompare(op, x.elems, y.elems, depth)
|
|
}
|
|
|
|
func sliceCompare(op syntax.Token, x, y []Value, depth int) (bool, error) {
|
|
// Fast path: check length.
|
|
if len(x) != len(y) && (op == syntax.EQL || op == syntax.NEQ) {
|
|
return op == syntax.NEQ, nil
|
|
}
|
|
|
|
// Find first element that is not equal in both lists.
|
|
for i := 0; i < len(x) && i < len(y); i++ {
|
|
if eq, err := EqualDepth(x[i], y[i], depth-1); err != nil {
|
|
return false, err
|
|
} else if !eq {
|
|
switch op {
|
|
case syntax.EQL:
|
|
return false, nil
|
|
case syntax.NEQ:
|
|
return true, nil
|
|
default:
|
|
return CompareDepth(op, x[i], y[i], depth-1)
|
|
}
|
|
}
|
|
}
|
|
|
|
return threeway(op, len(x)-len(y)), nil
|
|
}
|
|
|
|
type listIterator struct {
|
|
l *List
|
|
i int
|
|
}
|
|
|
|
func (it *listIterator) Next(p *Value) bool {
|
|
if it.i < it.l.Len() {
|
|
*p = it.l.elems[it.i]
|
|
it.i++
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (it *listIterator) Done() {
|
|
if !it.l.frozen {
|
|
it.l.itercount--
|
|
}
|
|
}
|
|
|
|
func (l *List) SetIndex(i int, v Value) error {
|
|
if err := l.checkMutable("assign to element of"); err != nil {
|
|
return err
|
|
}
|
|
l.elems[i] = v
|
|
return nil
|
|
}
|
|
|
|
func (l *List) Append(v Value) error {
|
|
if err := l.checkMutable("append to"); err != nil {
|
|
return err
|
|
}
|
|
l.elems = append(l.elems, v)
|
|
return nil
|
|
}
|
|
|
|
func (l *List) Clear() error {
|
|
if err := l.checkMutable("clear"); err != nil {
|
|
return err
|
|
}
|
|
for i := range l.elems {
|
|
l.elems[i] = nil // aid GC
|
|
}
|
|
l.elems = l.elems[:0]
|
|
return nil
|
|
}
|
|
|
|
// A Tuple represents a Starlark tuple value.
|
|
type Tuple []Value
|
|
|
|
func (t Tuple) Len() int { return len(t) }
|
|
func (t Tuple) Index(i int) Value { return t[i] }
|
|
|
|
func (t Tuple) Slice(start, end, step int) Value {
|
|
if step == 1 {
|
|
return t[start:end]
|
|
}
|
|
|
|
sign := signum(step)
|
|
var tuple Tuple
|
|
for i := start; signum(end-i) == sign; i += step {
|
|
tuple = append(tuple, t[i])
|
|
}
|
|
return tuple
|
|
}
|
|
|
|
func (t Tuple) Iterate() Iterator { return &tupleIterator{elems: t} }
|
|
func (t Tuple) Freeze() {
|
|
for _, elem := range t {
|
|
elem.Freeze()
|
|
}
|
|
}
|
|
func (t Tuple) String() string { return toString(t) }
|
|
func (t Tuple) Type() string { return "tuple" }
|
|
func (t Tuple) Truth() Bool { return len(t) > 0 }
|
|
|
|
func (x Tuple) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(Tuple)
|
|
return sliceCompare(op, x, y, depth)
|
|
}
|
|
|
|
func (t Tuple) Hash() (uint32, error) {
|
|
// Use same algorithm as Python.
|
|
var x, mult uint32 = 0x345678, 1000003
|
|
for _, elem := range t {
|
|
y, err := elem.Hash()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
x = x ^ y*mult
|
|
mult += 82520 + uint32(len(t)+len(t))
|
|
}
|
|
return x, nil
|
|
}
|
|
|
|
type tupleIterator struct{ elems Tuple }
|
|
|
|
func (it *tupleIterator) Next(p *Value) bool {
|
|
if len(it.elems) > 0 {
|
|
*p = it.elems[0]
|
|
it.elems = it.elems[1:]
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (it *tupleIterator) Done() {}
|
|
|
|
// A Set represents a Starlark set value.
|
|
// The zero value of Set is a valid empty set.
|
|
// If you know the exact final number of elements,
|
|
// it is more efficient to call NewSet.
|
|
type Set struct {
|
|
ht hashtable // values are all None
|
|
}
|
|
|
|
// NewSet returns a dictionary with initial space for
|
|
// at least size insertions before rehashing.
|
|
func NewSet(size int) *Set {
|
|
set := new(Set)
|
|
set.ht.init(size)
|
|
return set
|
|
}
|
|
|
|
func (s *Set) Delete(k Value) (found bool, err error) { _, found, err = s.ht.delete(k); return }
|
|
func (s *Set) Clear() error { return s.ht.clear() }
|
|
func (s *Set) Has(k Value) (found bool, err error) { _, found, err = s.ht.lookup(k); return }
|
|
func (s *Set) Insert(k Value) error { return s.ht.insert(k, None) }
|
|
func (s *Set) Len() int { return int(s.ht.len) }
|
|
func (s *Set) Iterate() Iterator { return s.ht.iterate() }
|
|
func (s *Set) String() string { return toString(s) }
|
|
func (s *Set) Type() string { return "set" }
|
|
func (s *Set) elems() []Value { return s.ht.keys() }
|
|
func (s *Set) Freeze() { s.ht.freeze() }
|
|
func (s *Set) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: set") }
|
|
func (s *Set) Truth() Bool { return s.Len() > 0 }
|
|
|
|
func (s *Set) Attr(name string) (Value, error) { return builtinAttr(s, name, setMethods) }
|
|
func (s *Set) AttrNames() []string { return builtinAttrNames(setMethods) }
|
|
|
|
func (x *Set) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
|
|
y := y_.(*Set)
|
|
switch op {
|
|
case syntax.EQL:
|
|
ok, err := setsEqual(x, y, depth)
|
|
return ok, err
|
|
case syntax.NEQ:
|
|
ok, err := setsEqual(x, y, depth)
|
|
return !ok, err
|
|
default:
|
|
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
|
|
}
|
|
}
|
|
|
|
func setsEqual(x, y *Set, depth int) (bool, error) {
|
|
if x.Len() != y.Len() {
|
|
return false, nil
|
|
}
|
|
for _, elem := range x.elems() {
|
|
if found, _ := y.Has(elem); !found {
|
|
return false, nil
|
|
}
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
func (s *Set) Union(iter Iterator) (Value, error) {
|
|
set := new(Set)
|
|
for _, elem := range s.elems() {
|
|
set.Insert(elem) // can't fail
|
|
}
|
|
var x Value
|
|
for iter.Next(&x) {
|
|
if err := set.Insert(x); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return set, nil
|
|
}
|
|
|
|
// toString returns the string form of value v.
|
|
// It may be more efficient than v.String() for larger values.
|
|
func toString(v Value) string {
|
|
buf := new(strings.Builder)
|
|
writeValue(buf, v, nil)
|
|
return buf.String()
|
|
}
|
|
|
|
// writeValue writes x to out.
|
|
//
|
|
// path is used to detect cycles.
|
|
// It contains the list of *List and *Dict values we're currently printing.
|
|
// (These are the only potentially cyclic structures.)
|
|
// Callers should generally pass nil for path.
|
|
// It is safe to re-use the same path slice for multiple calls.
|
|
func writeValue(out *strings.Builder, x Value, path []Value) {
|
|
switch x := x.(type) {
|
|
case nil:
|
|
out.WriteString("<nil>") // indicates a bug
|
|
|
|
case NoneType:
|
|
out.WriteString("None")
|
|
|
|
case Int:
|
|
out.WriteString(x.String())
|
|
|
|
case Bool:
|
|
if x {
|
|
out.WriteString("True")
|
|
} else {
|
|
out.WriteString("False")
|
|
}
|
|
|
|
case String:
|
|
fmt.Fprintf(out, "%q", string(x))
|
|
|
|
case *List:
|
|
out.WriteByte('[')
|
|
if pathContains(path, x) {
|
|
out.WriteString("...") // list contains itself
|
|
} else {
|
|
for i, elem := range x.elems {
|
|
if i > 0 {
|
|
out.WriteString(", ")
|
|
}
|
|
writeValue(out, elem, append(path, x))
|
|
}
|
|
}
|
|
out.WriteByte(']')
|
|
|
|
case Tuple:
|
|
out.WriteByte('(')
|
|
for i, elem := range x {
|
|
if i > 0 {
|
|
out.WriteString(", ")
|
|
}
|
|
writeValue(out, elem, path)
|
|
}
|
|
if len(x) == 1 {
|
|
out.WriteByte(',')
|
|
}
|
|
out.WriteByte(')')
|
|
|
|
case *Function:
|
|
fmt.Fprintf(out, "<function %s>", x.Name())
|
|
|
|
case *Builtin:
|
|
if x.recv != nil {
|
|
fmt.Fprintf(out, "<built-in method %s of %s value>", x.Name(), x.recv.Type())
|
|
} else {
|
|
fmt.Fprintf(out, "<built-in function %s>", x.Name())
|
|
}
|
|
|
|
case *Dict:
|
|
out.WriteByte('{')
|
|
if pathContains(path, x) {
|
|
out.WriteString("...") // dict contains itself
|
|
} else {
|
|
sep := ""
|
|
for _, item := range x.Items() {
|
|
k, v := item[0], item[1]
|
|
out.WriteString(sep)
|
|
writeValue(out, k, path)
|
|
out.WriteString(": ")
|
|
writeValue(out, v, append(path, x)) // cycle check
|
|
sep = ", "
|
|
}
|
|
}
|
|
out.WriteByte('}')
|
|
|
|
case *Set:
|
|
out.WriteString("set([")
|
|
for i, elem := range x.elems() {
|
|
if i > 0 {
|
|
out.WriteString(", ")
|
|
}
|
|
writeValue(out, elem, path)
|
|
}
|
|
out.WriteString("])")
|
|
|
|
default:
|
|
out.WriteString(x.String())
|
|
}
|
|
}
|
|
|
|
func pathContains(path []Value, x Value) bool {
|
|
for _, y := range path {
|
|
if x == y {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
const maxdepth = 10
|
|
|
|
// Equal reports whether two Starlark values are equal.
|
|
func Equal(x, y Value) (bool, error) {
|
|
if x, ok := x.(String); ok {
|
|
return x == y, nil // fast path for an important special case
|
|
}
|
|
return EqualDepth(x, y, maxdepth)
|
|
}
|
|
|
|
// EqualDepth reports whether two Starlark values are equal.
|
|
//
|
|
// Recursive comparisons by implementations of Value.CompareSameType
|
|
// should use EqualDepth to prevent infinite recursion.
|
|
func EqualDepth(x, y Value, depth int) (bool, error) {
|
|
return CompareDepth(syntax.EQL, x, y, depth)
|
|
}
|
|
|
|
// Compare compares two Starlark values.
|
|
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
|
|
// Compare returns an error if an ordered comparison was
|
|
// requested for a type that does not support it.
|
|
//
|
|
// Recursive comparisons by implementations of Value.CompareSameType
|
|
// should use CompareDepth to prevent infinite recursion.
|
|
func Compare(op syntax.Token, x, y Value) (bool, error) {
|
|
return CompareDepth(op, x, y, maxdepth)
|
|
}
|
|
|
|
// CompareDepth compares two Starlark values.
|
|
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
|
|
// CompareDepth returns an error if an ordered comparison was
|
|
// requested for a pair of values that do not support it.
|
|
//
|
|
// The depth parameter limits the maximum depth of recursion
|
|
// in cyclic data structures.
|
|
func CompareDepth(op syntax.Token, x, y Value, depth int) (bool, error) {
|
|
if depth < 1 {
|
|
return false, fmt.Errorf("comparison exceeded maximum recursion depth")
|
|
}
|
|
if sameType(x, y) {
|
|
if xcomp, ok := x.(Comparable); ok {
|
|
return xcomp.CompareSameType(op, y, depth)
|
|
}
|
|
|
|
// use identity comparison
|
|
switch op {
|
|
case syntax.EQL:
|
|
return x == y, nil
|
|
case syntax.NEQ:
|
|
return x != y, nil
|
|
}
|
|
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
|
|
}
|
|
|
|
// different types
|
|
|
|
// int/float ordered comparisons
|
|
switch x := x.(type) {
|
|
case Int:
|
|
if y, ok := y.(Float); ok {
|
|
if y != y {
|
|
return false, nil // y is NaN
|
|
}
|
|
var cmp int
|
|
if !math.IsInf(float64(y), 0) {
|
|
cmp = x.rational().Cmp(y.rational()) // y is finite
|
|
} else if y > 0 {
|
|
cmp = -1 // y is +Inf
|
|
} else {
|
|
cmp = +1 // y is -Inf
|
|
}
|
|
return threeway(op, cmp), nil
|
|
}
|
|
case Float:
|
|
if y, ok := y.(Int); ok {
|
|
if x != x {
|
|
return false, nil // x is NaN
|
|
}
|
|
var cmp int
|
|
if !math.IsInf(float64(x), 0) {
|
|
cmp = x.rational().Cmp(y.rational()) // x is finite
|
|
} else if x > 0 {
|
|
cmp = -1 // x is +Inf
|
|
} else {
|
|
cmp = +1 // x is -Inf
|
|
}
|
|
return threeway(op, cmp), nil
|
|
}
|
|
}
|
|
|
|
// All other values of different types compare unequal.
|
|
switch op {
|
|
case syntax.EQL:
|
|
return false, nil
|
|
case syntax.NEQ:
|
|
return true, nil
|
|
}
|
|
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
|
|
}
|
|
|
|
func sameType(x, y Value) bool {
|
|
return reflect.TypeOf(x) == reflect.TypeOf(y) || x.Type() == y.Type()
|
|
}
|
|
|
|
// threeway interprets a three-way comparison value cmp (-1, 0, +1)
|
|
// as a boolean comparison (e.g. x < y).
|
|
func threeway(op syntax.Token, cmp int) bool {
|
|
switch op {
|
|
case syntax.EQL:
|
|
return cmp == 0
|
|
case syntax.NEQ:
|
|
return cmp != 0
|
|
case syntax.LE:
|
|
return cmp <= 0
|
|
case syntax.LT:
|
|
return cmp < 0
|
|
case syntax.GE:
|
|
return cmp >= 0
|
|
case syntax.GT:
|
|
return cmp > 0
|
|
}
|
|
panic(op)
|
|
}
|
|
|
|
func b2i(b bool) int {
|
|
if b {
|
|
return 1
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
// Len returns the length of a string or sequence value,
|
|
// and -1 for all others.
|
|
//
|
|
// Warning: Len(x) >= 0 does not imply Iterate(x) != nil.
|
|
// A string has a known length but is not directly iterable.
|
|
func Len(x Value) int {
|
|
switch x := x.(type) {
|
|
case String:
|
|
return x.Len()
|
|
case Sequence:
|
|
return x.Len()
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Iterate return a new iterator for the value if iterable, nil otherwise.
|
|
// If the result is non-nil, the caller must call Done when finished with it.
|
|
//
|
|
// Warning: Iterate(x) != nil does not imply Len(x) >= 0.
|
|
// Some iterables may have unknown length.
|
|
func Iterate(x Value) Iterator {
|
|
if x, ok := x.(Iterable); ok {
|
|
return x.Iterate()
|
|
}
|
|
return nil
|
|
}
|