k3s/vendor/gonum.org/v1/gonum/blas/doc.go
Darren Shepherd 8031137b79 Update vendor
2019-08-30 23:08:05 -07:00

109 lines
5.8 KiB
Go

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package blas provides interfaces for the BLAS linear algebra standard.
All methods must perform appropriate parameter checking and panic if
provided parameters that do not conform to the requirements specified
by the BLAS standard.
Quick Reference Guide to the BLAS from http://www.netlib.org/lapack/lug/node145.html
This version is modified to remove the "order" option. All matrix operations are
on row-order matrices.
Level 1 BLAS
dim scalar vector vector scalars 5-element prefixes
struct
_rotg ( a, b ) S, D
_rotmg( d1, d2, a, b ) S, D
_rot ( n, x, incX, y, incY, c, s ) S, D
_rotm ( n, x, incX, y, incY, param ) S, D
_swap ( n, x, incX, y, incY ) S, D, C, Z
_scal ( n, alpha, x, incX ) S, D, C, Z, Cs, Zd
_copy ( n, x, incX, y, incY ) S, D, C, Z
_axpy ( n, alpha, x, incX, y, incY ) S, D, C, Z
_dot ( n, x, incX, y, incY ) S, D, Ds
_dotu ( n, x, incX, y, incY ) C, Z
_dotc ( n, x, incX, y, incY ) C, Z
__dot ( n, alpha, x, incX, y, incY ) Sds
_nrm2 ( n, x, incX ) S, D, Sc, Dz
_asum ( n, x, incX ) S, D, Sc, Dz
I_amax( n, x, incX ) s, d, c, z
Level 2 BLAS
options dim b-width scalar matrix vector scalar vector prefixes
_gemv ( trans, m, n, alpha, a, lda, x, incX, beta, y, incY ) S, D, C, Z
_gbmv ( trans, m, n, kL, kU, alpha, a, lda, x, incX, beta, y, incY ) S, D, C, Z
_hemv ( uplo, n, alpha, a, lda, x, incX, beta, y, incY ) C, Z
_hbmv ( uplo, n, k, alpha, a, lda, x, incX, beta, y, incY ) C, Z
_hpmv ( uplo, n, alpha, ap, x, incX, beta, y, incY ) C, Z
_symv ( uplo, n, alpha, a, lda, x, incX, beta, y, incY ) S, D
_sbmv ( uplo, n, k, alpha, a, lda, x, incX, beta, y, incY ) S, D
_spmv ( uplo, n, alpha, ap, x, incX, beta, y, incY ) S, D
_trmv ( uplo, trans, diag, n, a, lda, x, incX ) S, D, C, Z
_tbmv ( uplo, trans, diag, n, k, a, lda, x, incX ) S, D, C, Z
_tpmv ( uplo, trans, diag, n, ap, x, incX ) S, D, C, Z
_trsv ( uplo, trans, diag, n, a, lda, x, incX ) S, D, C, Z
_tbsv ( uplo, trans, diag, n, k, a, lda, x, incX ) S, D, C, Z
_tpsv ( uplo, trans, diag, n, ap, x, incX ) S, D, C, Z
options dim scalar vector vector matrix prefixes
_ger ( m, n, alpha, x, incX, y, incY, a, lda ) S, D
_geru ( m, n, alpha, x, incX, y, incY, a, lda ) C, Z
_gerc ( m, n, alpha, x, incX, y, incY, a, lda ) C, Z
_her ( uplo, n, alpha, x, incX, a, lda ) C, Z
_hpr ( uplo, n, alpha, x, incX, ap ) C, Z
_her2 ( uplo, n, alpha, x, incX, y, incY, a, lda ) C, Z
_hpr2 ( uplo, n, alpha, x, incX, y, incY, ap ) C, Z
_syr ( uplo, n, alpha, x, incX, a, lda ) S, D
_spr ( uplo, n, alpha, x, incX, ap ) S, D
_syr2 ( uplo, n, alpha, x, incX, y, incY, a, lda ) S, D
_spr2 ( uplo, n, alpha, x, incX, y, incY, ap ) S, D
Level 3 BLAS
options dim scalar matrix matrix scalar matrix prefixes
_gemm ( transA, transB, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
_symm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
_hemm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc ) C, Z
_syrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc ) S, D, C, Z
_herk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc ) C, Z
_syr2k( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
_her2k( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) C, Z
_trmm ( side, uplo, transA, diag, m, n, alpha, a, lda, b, ldb ) S, D, C, Z
_trsm ( side, uplo, transA, diag, m, n, alpha, a, lda, b, ldb ) S, D, C, Z
Meaning of prefixes
S - float32 C - complex64
D - float64 Z - complex128
Matrix types
GE - GEneral GB - General Band
SY - SYmmetric SB - Symmetric Band SP - Symmetric Packed
HE - HErmitian HB - Hermitian Band HP - Hermitian Packed
TR - TRiangular TB - Triangular Band TP - Triangular Packed
Options
trans = NoTrans, Trans, ConjTrans
uplo = Upper, Lower
diag = Nonunit, Unit
side = Left, Right (A or op(A) on the left, or A or op(A) on the right)
For real matrices, Trans and ConjTrans have the same meaning.
For Hermitian matrices, trans = Trans is not allowed.
For complex symmetric matrices, trans = ConjTrans is not allowed.
*/
package blas // import "gonum.org/v1/gonum/blas"