k3s/vendor/gonum.org/v1/gonum/mat/gsvd.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

437 lines
11 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
// GSVDKind specifies the treatment of singular vectors during a GSVD
// factorization.
type GSVDKind int
const (
// GSVDNone specifies that no singular vectors should be computed during
// the decomposition.
GSVDNone GSVDKind = 0
// GSVDU specifies that the U singular vectors should be computed during
// the decomposition.
GSVDU GSVDKind = 1 << iota
// GSVDV specifies that the V singular vectors should be computed during
// the decomposition.
GSVDV
// GSVDQ specifies that the Q singular vectors should be computed during
// the decomposition.
GSVDQ
// GSVDAll is a convenience value for computing all of the singular vectors.
GSVDAll = GSVDU | GSVDV | GSVDQ
)
// GSVD is a type for creating and using the Generalized Singular Value Decomposition
// (GSVD) of a matrix.
//
// The factorization is a linear transformation of the data sets from the given
// variable×sample spaces to reduced and diagonalized "eigenvariable"×"eigensample"
// spaces.
type GSVD struct {
kind GSVDKind
r, p, c, k, l int
s1, s2 []float64
a, b, u, v, q blas64.General
work []float64
iwork []int
}
// succFact returns whether the receiver contains a successful factorization.
func (gsvd *GSVD) succFact() bool {
return gsvd.r != 0
}
// Factorize computes the generalized singular value decomposition (GSVD) of the input
// the r×c matrix A and the p×c matrix B. The singular values of A and B are computed
// in all cases, while the singular vectors are optionally computed depending on the
// input kind.
//
// The full singular value decomposition (kind == GSVDAll) deconstructs A and B as
// A = U * Σ₁ * [ 0 R ] * Qᵀ
//
// B = V * Σ₂ * [ 0 R ] * Qᵀ
// where Σ₁ and Σ₂ are r×(k+l) and p×(k+l) diagonal matrices of singular values, and
// U, V and Q are r×r, p×p and c×c orthogonal matrices of singular vectors. k+l is the
// effective numerical rank of the matrix [ Aᵀ Bᵀ ]ᵀ.
//
// It is frequently not necessary to compute the full GSVD. Computation time and
// storage costs can be reduced using the appropriate kind. Either only the singular
// values can be computed (kind == SVDNone), or in conjunction with specific singular
// vectors (kind bit set according to matrix.GSVDU, matrix.GSVDV and matrix.GSVDQ).
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, routines that require a successful factorization will panic.
func (gsvd *GSVD) Factorize(a, b Matrix, kind GSVDKind) (ok bool) {
// kill the previous decomposition
gsvd.r = 0
gsvd.kind = 0
r, c := a.Dims()
gsvd.r, gsvd.c = r, c
p, c := b.Dims()
gsvd.p = p
if gsvd.c != c {
panic(ErrShape)
}
var jobU, jobV, jobQ lapack.GSVDJob
switch {
default:
panic("gsvd: bad input kind")
case kind == GSVDNone:
jobU = lapack.GSVDNone
jobV = lapack.GSVDNone
jobQ = lapack.GSVDNone
case GSVDAll&kind != 0:
if GSVDU&kind != 0 {
jobU = lapack.GSVDU
gsvd.u = blas64.General{
Rows: r,
Cols: r,
Stride: r,
Data: use(gsvd.u.Data, r*r),
}
}
if GSVDV&kind != 0 {
jobV = lapack.GSVDV
gsvd.v = blas64.General{
Rows: p,
Cols: p,
Stride: p,
Data: use(gsvd.v.Data, p*p),
}
}
if GSVDQ&kind != 0 {
jobQ = lapack.GSVDQ
gsvd.q = blas64.General{
Rows: c,
Cols: c,
Stride: c,
Data: use(gsvd.q.Data, c*c),
}
}
}
// A and B are destroyed on call, so copy the matrices.
aCopy := DenseCopyOf(a)
bCopy := DenseCopyOf(b)
gsvd.s1 = use(gsvd.s1, c)
gsvd.s2 = use(gsvd.s2, c)
gsvd.iwork = useInt(gsvd.iwork, c)
gsvd.work = use(gsvd.work, 1)
lapack64.Ggsvd3(jobU, jobV, jobQ, aCopy.mat, bCopy.mat, gsvd.s1, gsvd.s2, gsvd.u, gsvd.v, gsvd.q, gsvd.work, -1, gsvd.iwork)
gsvd.work = use(gsvd.work, int(gsvd.work[0]))
gsvd.k, gsvd.l, ok = lapack64.Ggsvd3(jobU, jobV, jobQ, aCopy.mat, bCopy.mat, gsvd.s1, gsvd.s2, gsvd.u, gsvd.v, gsvd.q, gsvd.work, len(gsvd.work), gsvd.iwork)
if ok {
gsvd.a = aCopy.mat
gsvd.b = bCopy.mat
gsvd.kind = kind
}
return ok
}
// Kind returns the GSVDKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (gsvd *GSVD) Kind() GSVDKind {
if !gsvd.succFact() {
return -1
}
return gsvd.kind
}
// Rank returns the k and l terms of the rank of [ Aᵀ Bᵀ ]ᵀ.
func (gsvd *GSVD) Rank() (k, l int) {
return gsvd.k, gsvd.l
}
// GeneralizedValues returns the generalized singular values of the factorized matrices.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length min(r,c)-k, and GeneralizedValues will
// panic with matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// GeneralizedValues will panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) GeneralizedValues(v []float64) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
d := min(r, c)
if v == nil {
v = make([]float64, d-k)
}
if len(v) != d-k {
panic(ErrSliceLengthMismatch)
}
floats.DivTo(v, gsvd.s1[k:d], gsvd.s2[k:d])
return v
}
// ValuesA returns the singular values of the factorized A matrix.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length min(r,c)-k, and ValuesA will panic with
// matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// ValuesA will panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) ValuesA(s []float64) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
d := min(r, c)
if s == nil {
s = make([]float64, d-k)
}
if len(s) != d-k {
panic(ErrSliceLengthMismatch)
}
copy(s, gsvd.s1[k:min(r, c)])
return s
}
// ValuesB returns the singular values of the factorized B matrix.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length min(r,c)-k, and ValuesB will panic with
// matrix.ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// ValuesB will panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) ValuesB(s []float64) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
d := min(r, c)
if s == nil {
s = make([]float64, d-k)
}
if len(s) != d-k {
panic(ErrSliceLengthMismatch)
}
copy(s, gsvd.s2[k:d])
return s
}
// ZeroRTo extracts the matrix [ 0 R ] from the singular value decomposition,
// storing the result into dst. [ 0 R ] is of size (k+l)×c.
//
// If dst is empty, ZeroRTo will resize dst to be (k+l)×c. When dst is
// non-empty, ZeroRTo will panic if dst is not (k+l)×c. ZeroRTo will also panic
// if the receiver does not contain a successful factorization.
func (gsvd *GSVD) ZeroRTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
l := gsvd.l
h := min(k+l, r)
if dst.IsEmpty() {
dst.ReuseAs(k+l, c)
} else {
r2, c2 := dst.Dims()
if r2 != k+l || c != c2 {
panic(ErrShape)
}
dst.Zero()
}
a := Dense{
mat: gsvd.a,
capRows: r,
capCols: c,
}
dst.Slice(0, h, c-k-l, c).(*Dense).
Copy(a.Slice(0, h, c-k-l, c))
if r < k+l {
b := Dense{
mat: gsvd.b,
capRows: gsvd.p,
capCols: c,
}
dst.Slice(r, k+l, c+r-k-l, c).(*Dense).
Copy(b.Slice(r-k, l, c+r-k-l, c))
}
}
// SigmaATo extracts the matrix Σ₁ from the singular value decomposition, storing
// the result into dst. Σ₁ is size r×(k+l).
//
// If dst is empty, SigmaATo will resize dst to be r×(k+l). When dst is
// non-empty, SigmATo will panic if dst is not r×(k+l). SigmaATo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) SigmaATo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
k := gsvd.k
l := gsvd.l
if dst.IsEmpty() {
dst.ReuseAs(r, k+l)
} else {
r2, c := dst.Dims()
if r2 != r || c != k+l {
panic(ErrShape)
}
dst.Zero()
}
for i := 0; i < k; i++ {
dst.set(i, i, 1)
}
for i := k; i < min(r, k+l); i++ {
dst.set(i, i, gsvd.s1[i])
}
}
// SigmaBTo extracts the matrix Σ₂ from the singular value decomposition, storing
// the result into dst. Σ₂ is size p×(k+l).
//
// If dst is empty, SigmaBTo will resize dst to be p×(k+l). When dst is
// non-empty, SigmBTo will panic if dst is not p×(k+l). SigmaBTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) SigmaBTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
p := gsvd.p
k := gsvd.k
l := gsvd.l
if dst.IsEmpty() {
dst.ReuseAs(p, k+l)
} else {
r, c := dst.Dims()
if r != p || c != k+l {
panic(ErrShape)
}
dst.Zero()
}
for i := 0; i < min(l, r-k); i++ {
dst.set(i, i+k, gsvd.s2[k+i])
}
for i := r - k; i < l; i++ {
dst.set(i, i+k, 1)
}
}
// UTo extracts the matrix U from the singular value decomposition, storing
// the result into dst. U is size r×r.
//
// If dst is empty, UTo will resize dst to be r×r. When dst is
// non-empty, UTo will panic if dst is not r×r. UTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) UTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
if gsvd.kind&GSVDU == 0 {
panic("mat: improper GSVD kind")
}
r := gsvd.u.Rows
c := gsvd.u.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: gsvd.u,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// VTo extracts the matrix V from the singular value decomposition, storing
// the result into dst. V is size p×p.
//
// If dst is empty, VTo will resize dst to be p×p. When dst is
// non-empty, VTo will panic if dst is not p×p. VTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) VTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
if gsvd.kind&GSVDV == 0 {
panic("mat: improper GSVD kind")
}
r := gsvd.v.Rows
c := gsvd.v.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: gsvd.v,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// QTo extracts the matrix Q from the singular value decomposition, storing
// the result into dst. Q is size c×c.
//
// If dst is empty, QTo will resize dst to be c×c. When dst is
// non-empty, QTo will panic if dst is not c×c. QTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) QTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
if gsvd.kind&GSVDQ == 0 {
panic("mat: improper GSVD kind")
}
r := gsvd.q.Rows
c := gsvd.q.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: gsvd.q,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}