k3s/vendor/gonum.org/v1/gonum/mat/cholesky.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

701 lines
20 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badTriangle = "mat: invalid triangle"
badCholesky = "mat: invalid Cholesky factorization"
)
var (
_ Matrix = (*Cholesky)(nil)
_ Symmetric = (*Cholesky)(nil)
)
// Cholesky is a symmetric positive definite matrix represented by its
// Cholesky decomposition.
//
// The decomposition can be constructed using the Factorize method. The
// factorization itself can be extracted using the UTo or LTo methods, and the
// original symmetric matrix can be recovered with ToSym.
//
// Note that this matrix representation is useful for certain operations, in
// particular finding solutions to linear equations. It is very inefficient
// at other operations, in particular At is slow.
//
// Cholesky methods may only be called on a value that has been successfully
// initialized by a call to Factorize that has returned true. Calls to methods
// of an unsuccessful Cholesky factorization will panic.
type Cholesky struct {
// The chol pointer must never be retained as a pointer outside the Cholesky
// struct, either by returning chol outside the struct or by setting it to
// a pointer coming from outside. The same prohibition applies to the data
// slice within chol.
chol *TriDense
cond float64
}
// updateCond updates the condition number of the Cholesky decomposition. If
// norm > 0, then that norm is used as the norm of the original matrix A, otherwise
// the norm is estimated from the decomposition.
func (c *Cholesky) updateCond(norm float64) {
n := c.chol.mat.N
work := getFloats(3*n, false)
defer putFloats(work)
if norm < 0 {
// This is an approximation. By the definition of a norm,
// |AB| <= |A| |B|.
// Since A = Uᵀ*U, we get for the condition number κ that
// κ(A) := |A| |A^-1| = |Uᵀ*U| |A^-1| <= |Uᵀ| |U| |A^-1|,
// so this will overestimate the condition number somewhat.
// The norm of the original factorized matrix cannot be stored
// because of update possibilities.
unorm := lapack64.Lantr(CondNorm, c.chol.mat, work)
lnorm := lapack64.Lantr(CondNormTrans, c.chol.mat, work)
norm = unorm * lnorm
}
sym := c.chol.asSymBlas()
iwork := getInts(n, false)
v := lapack64.Pocon(sym, norm, work, iwork)
putInts(iwork)
c.cond = 1 / v
}
// Dims returns the dimensions of the matrix.
func (ch *Cholesky) Dims() (r, c int) {
if !ch.valid() {
panic(badCholesky)
}
r, c = ch.chol.Dims()
return r, c
}
// At returns the element at row i, column j.
func (c *Cholesky) At(i, j int) float64 {
if !c.valid() {
panic(badCholesky)
}
n := c.Symmetric()
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
var val float64
for k := 0; k <= min(i, j); k++ {
val += c.chol.at(k, i) * c.chol.at(k, j)
}
return val
}
// T returns the the receiver, the transpose of a symmetric matrix.
func (c *Cholesky) T() Matrix {
return c
}
// Symmetric implements the Symmetric interface and returns the number of rows
// in the matrix (this is also the number of columns).
func (c *Cholesky) Symmetric() int {
r, _ := c.chol.Dims()
return r
}
// Cond returns the condition number of the factorized matrix.
func (c *Cholesky) Cond() float64 {
if !c.valid() {
panic(badCholesky)
}
return c.cond
}
// Factorize calculates the Cholesky decomposition of the matrix A and returns
// whether the matrix is positive definite. If Factorize returns false, the
// factorization must not be used.
func (c *Cholesky) Factorize(a Symmetric) (ok bool) {
n := a.Symmetric()
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
}
copySymIntoTriangle(c.chol, a)
sym := c.chol.asSymBlas()
work := getFloats(c.chol.mat.N, false)
norm := lapack64.Lansy(CondNorm, sym, work)
putFloats(work)
_, ok = lapack64.Potrf(sym)
if ok {
c.updateCond(norm)
} else {
c.Reset()
}
return ok
}
// Reset resets the factorization so that it can be reused as the receiver of a
// dimensionally restricted operation.
func (c *Cholesky) Reset() {
if c.chol != nil {
c.chol.Reset()
}
c.cond = math.Inf(1)
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (c *Cholesky) IsEmpty() bool {
return c.chol == nil || c.chol.IsEmpty()
}
// SetFromU sets the Cholesky decomposition from the given triangular matrix.
// SetFromU panics if t is not upper triangular. If the receiver is empty it
// is resized to be n×n, the size of t. If dst is non-empty, SetFromU panics
// if c is not of size n×n. Note that t is copied into, not stored inside, the
// receiver.
func (c *Cholesky) SetFromU(t Triangular) {
n, kind := t.Triangle()
if kind != Upper {
panic("cholesky: matrix must be upper triangular")
}
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol.reuseAsNonZeroed(n, Upper)
}
c.chol.Copy(t)
c.updateCond(-1)
}
// Clone makes a copy of the input Cholesky into the receiver, overwriting the
// previous value of the receiver. Clone does not place any restrictions on receiver
// shape. Clone panics if the input Cholesky is not the result of a valid decomposition.
func (c *Cholesky) Clone(chol *Cholesky) {
if !chol.valid() {
panic(badCholesky)
}
n := chol.Symmetric()
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
}
c.chol.Copy(chol.chol)
c.cond = chol.cond
}
// Det returns the determinant of the matrix that has been factorized.
func (c *Cholesky) Det() float64 {
if !c.valid() {
panic(badCholesky)
}
return math.Exp(c.LogDet())
}
// LogDet returns the log of the determinant of the matrix that has been factorized.
func (c *Cholesky) LogDet() float64 {
if !c.valid() {
panic(badCholesky)
}
var det float64
for i := 0; i < c.chol.mat.N; i++ {
det += 2 * math.Log(c.chol.mat.Data[i*c.chol.mat.Stride+i])
}
return det
}
// SolveTo finds the matrix X that solves A * X = B where A is represented
// by the Cholesky decomposition. The result is stored in-place into dst.
func (c *Cholesky) SolveTo(dst *Dense, b Matrix) error {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
bm, bn := b.Dims()
if n != bm {
panic(ErrShape)
}
dst.reuseAsNonZeroed(bm, bn)
if b != dst {
dst.Copy(b)
}
lapack64.Potrs(c.chol.mat, dst.mat)
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
// SolveCholTo finds the matrix X that solves A * X = B where A and B are represented
// by their Cholesky decompositions a and b. The result is stored in-place into
// dst.
func (a *Cholesky) SolveCholTo(dst *Dense, b *Cholesky) error {
if !a.valid() || !b.valid() {
panic(badCholesky)
}
bn := b.chol.mat.N
if a.chol.mat.N != bn {
panic(ErrShape)
}
dst.reuseAsZeroed(bn, bn)
dst.Copy(b.chol.T())
blas64.Trsm(blas.Left, blas.Trans, 1, a.chol.mat, dst.mat)
blas64.Trsm(blas.Left, blas.NoTrans, 1, a.chol.mat, dst.mat)
blas64.Trmm(blas.Right, blas.NoTrans, 1, b.chol.mat, dst.mat)
if a.cond > ConditionTolerance {
return Condition(a.cond)
}
return nil
}
// SolveVecTo finds the vector X that solves A * x = b where A is represented
// by the Cholesky decomposition. The result is stored in-place into
// dst.
func (c *Cholesky) SolveVecTo(dst *VecDense, b Vector) error {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
switch rv := b.(type) {
default:
dst.reuseAsNonZeroed(n)
return c.SolveTo(dst.asDense(), b)
case RawVectorer:
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
lapack64.Potrs(c.chol.mat, dst.asGeneral())
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
}
// RawU returns the Triangular matrix used to store the Cholesky decomposition of
// the original matrix A. The returned matrix should not be modified. If it is
// modified, the decomposition is invalid and should not be used.
func (c *Cholesky) RawU() Triangular {
return c.chol
}
// UTo stores into dst the n×n upper triangular matrix U from a Cholesky
// decomposition
// A = Uᵀ * U.
// If dst is empty, it is resized to be an n×n upper triangular matrix. When dst
// is non-empty, UTo panics if dst is not n×n or not Upper. UTo will also panic
// if the receiver does not contain a successful factorization.
func (c *Cholesky) UTo(dst *TriDense) {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst.IsEmpty() {
dst.ReuseAsTri(n, Upper)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Upper {
panic(ErrTriangle)
}
}
dst.Copy(c.chol)
}
// LTo stores into dst the n×n lower triangular matrix L from a Cholesky
// decomposition
// A = L * Lᵀ.
// If dst is empty, it is resized to be an n×n lower triangular matrix. When dst
// is non-empty, LTo panics if dst is not n×n or not Lower. LTo will also panic
// if the receiver does not contain a successful factorization.
func (c *Cholesky) LTo(dst *TriDense) {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst.IsEmpty() {
dst.ReuseAsTri(n, Lower)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Lower {
panic(ErrTriangle)
}
}
dst.Copy(c.chol.TTri())
}
// ToSym reconstructs the original positive definite matrix from its
// Cholesky decomposition, storing the result into dst. If dst is
// empty it is resized to be n×n. If dst is non-empty, ToSym panics
// if dst is not of size n×n. ToSym will also panic if the receiver
// does not contain a successful factorization.
func (c *Cholesky) ToSym(dst *SymDense) {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst.IsEmpty() {
dst.ReuseAsSym(n)
} else {
n2 := dst.Symmetric()
if n != n2 {
panic(ErrShape)
}
}
// Create a TriDense representing the Cholesky factor U with dst's
// backing slice.
// Operations on u are reflected in s.
u := &TriDense{
mat: blas64.Triangular{
Uplo: blas.Upper,
Diag: blas.NonUnit,
N: n,
Data: dst.mat.Data,
Stride: dst.mat.Stride,
},
cap: n,
}
u.Copy(c.chol)
// Compute the product Uᵀ*U using the algorithm from LAPACK/TESTING/LIN/dpot01.f
a := u.mat.Data
lda := u.mat.Stride
bi := blas64.Implementation()
for k := n - 1; k >= 0; k-- {
a[k*lda+k] = bi.Ddot(k+1, a[k:], lda, a[k:], lda)
if k > 0 {
bi.Dtrmv(blas.Upper, blas.Trans, blas.NonUnit, k, a, lda, a[k:], lda)
}
}
}
// InverseTo computes the inverse of the matrix represented by its Cholesky
// factorization and stores the result into s. If the factorized
// matrix is ill-conditioned, a Condition error will be returned.
// Note that matrix inversion is numerically unstable, and should generally be
// avoided where possible, for example by using the Solve routines.
func (c *Cholesky) InverseTo(s *SymDense) error {
if !c.valid() {
panic(badCholesky)
}
s.reuseAsNonZeroed(c.chol.mat.N)
// Create a TriDense representing the Cholesky factor U with the backing
// slice from s.
// Operations on u are reflected in s.
u := &TriDense{
mat: blas64.Triangular{
Uplo: blas.Upper,
Diag: blas.NonUnit,
N: s.mat.N,
Data: s.mat.Data,
Stride: s.mat.Stride,
},
cap: s.mat.N,
}
u.Copy(c.chol)
_, ok := lapack64.Potri(u.mat)
if !ok {
return Condition(math.Inf(1))
}
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
// Scale multiplies the original matrix A by a positive constant using
// its Cholesky decomposition, storing the result in-place into the receiver.
// That is, if the original Cholesky factorization is
// Uᵀ * U = A
// the updated factorization is
// U'ᵀ * U' = f A = A'
// Scale panics if the constant is non-positive, or if the receiver is non-empty
// and is of a different size from the input.
func (c *Cholesky) Scale(f float64, orig *Cholesky) {
if !orig.valid() {
panic(badCholesky)
}
if f <= 0 {
panic("cholesky: scaling by a non-positive constant")
}
n := orig.Symmetric()
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else if c.chol.mat.N != n {
panic(ErrShape)
}
c.chol.ScaleTri(math.Sqrt(f), orig.chol)
c.cond = orig.cond // Scaling by a positive constant does not change the condition number.
}
// ExtendVecSym computes the Cholesky decomposition of the original matrix A,
// whose Cholesky decomposition is in a, extended by a the n×1 vector v according to
// [A w]
// [w' k]
// where k = v[n-1] and w = v[:n-1]. The result is stored into the receiver.
// In order for the updated matrix to be positive definite, it must be the case
// that k > w' A^-1 w. If this condition does not hold then ExtendVecSym will
// return false and the receiver will not be updated.
//
// ExtendVecSym will panic if v.Len() != a.Symmetric()+1 or if a does not contain
// a valid decomposition.
func (c *Cholesky) ExtendVecSym(a *Cholesky, v Vector) (ok bool) {
n := a.Symmetric()
if v.Len() != n+1 {
panic(badSliceLength)
}
if !a.valid() {
panic(badCholesky)
}
// The algorithm is commented here, but see also
// https://math.stackexchange.com/questions/955874/cholesky-factor-when-adding-a-row-and-column-to-already-factorized-matrix
// We have A and want to compute the Cholesky of
// [A w]
// [w' k]
// We want
// [U c]
// [0 d]
// to be the updated Cholesky, and so it must be that
// [A w] = [U' 0] [U c]
// [w' k] [c' d] [0 d]
// Thus, we need
// 1) A = U'U (true by the original decomposition being valid),
// 2) U' * c = w => c = U'^-1 w
// 3) c'*c + d'*d = k => d = sqrt(k-c'*c)
// First, compute c = U'^-1 a
// TODO(btracey): Replace this with CopyVec when issue 167 is fixed.
w := NewVecDense(n, nil)
for i := 0; i < n; i++ {
w.SetVec(i, v.At(i, 0))
}
k := v.At(n, 0)
var t VecDense
t.SolveVec(a.chol.T(), w)
dot := Dot(&t, &t)
if dot >= k {
return false
}
d := math.Sqrt(k - dot)
newU := NewTriDense(n+1, Upper, nil)
newU.Copy(a.chol)
for i := 0; i < n; i++ {
newU.SetTri(i, n, t.At(i, 0))
}
newU.SetTri(n, n, d)
c.chol = newU
c.updateCond(-1)
return true
}
// SymRankOne performs a rank-1 update of the original matrix A and refactorizes
// its Cholesky factorization, storing the result into the receiver. That is, if
// in the original Cholesky factorization
// Uᵀ * U = A,
// in the updated factorization
// U'ᵀ * U' = A + alpha * x * xᵀ = A'.
//
// Note that when alpha is negative, the updating problem may be ill-conditioned
// and the results may be inaccurate, or the updated matrix A' may not be
// positive definite and not have a Cholesky factorization. SymRankOne returns
// whether the updated matrix A' is positive definite.
//
// SymRankOne updates a Cholesky factorization in O(n²) time. The Cholesky
// factorization computation from scratch is O(n³).
func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x Vector) (ok bool) {
if !orig.valid() {
panic(badCholesky)
}
n := orig.Symmetric()
if r, c := x.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if orig != c {
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else if c.chol.mat.N != n {
panic(ErrShape)
}
c.chol.Copy(orig.chol)
}
if alpha == 0 {
return true
}
// Algorithms for updating and downdating the Cholesky factorization are
// described, for example, in
// - J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart: LINPACK
// Users' Guide. SIAM (1979), pages 10.10--10.14
// or
// - P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders: Methods for
// modifying matrix factorizations. Mathematics of Computation 28(126)
// (1974), Method C3 on page 521
//
// The implementation is based on LINPACK code
// http://www.netlib.org/linpack/dchud.f
// http://www.netlib.org/linpack/dchdd.f
// and
// https://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646
//
// According to http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00301.html
// LINPACK is released under BSD license.
//
// See also:
// - M. A. Saunders: Large-scale Linear Programming Using the Cholesky
// Factorization. Technical Report Stanford University (1972)
// http://i.stanford.edu/pub/cstr/reports/cs/tr/72/252/CS-TR-72-252.pdf
// - Matthias Seeger: Low rank updates for the Cholesky decomposition.
// EPFL Technical Report 161468 (2004)
// http://infoscience.epfl.ch/record/161468
work := getFloats(n, false)
defer putFloats(work)
var xmat blas64.Vector
if rv, ok := x.(RawVectorer); ok {
xmat = rv.RawVector()
} else {
var tmp *VecDense
tmp.CopyVec(x)
xmat = tmp.RawVector()
}
blas64.Copy(xmat, blas64.Vector{N: n, Data: work, Inc: 1})
if alpha > 0 {
// Compute rank-1 update.
if alpha != 1 {
blas64.Scal(math.Sqrt(alpha), blas64.Vector{N: n, Data: work, Inc: 1})
}
umat := c.chol.mat
stride := umat.Stride
for i := 0; i < n; i++ {
// Compute parameters of the Givens matrix that zeroes
// the i-th element of x.
c, s, r, _ := blas64.Rotg(umat.Data[i*stride+i], work[i])
if r < 0 {
// Multiply by -1 to have positive diagonal
// elemnts.
r *= -1
c *= -1
s *= -1
}
umat.Data[i*stride+i] = r
if i < n-1 {
// Multiply the extended factorization matrix by
// the Givens matrix from the left. Only
// the i-th row and x are modified.
blas64.Rot(
blas64.Vector{N: n - i - 1, Data: umat.Data[i*stride+i+1 : i*stride+n], Inc: 1},
blas64.Vector{N: n - i - 1, Data: work[i+1 : n], Inc: 1},
c, s)
}
}
c.updateCond(-1)
return true
}
// Compute rank-1 downdate.
alpha = math.Sqrt(-alpha)
if alpha != 1 {
blas64.Scal(alpha, blas64.Vector{N: n, Data: work, Inc: 1})
}
// Solve Uᵀ * p = x storing the result into work.
ok = lapack64.Trtrs(blas.Trans, c.chol.RawTriangular(), blas64.General{
Rows: n,
Cols: 1,
Stride: 1,
Data: work,
})
if !ok {
// The original matrix is singular. Should not happen, because
// the factorization is valid.
panic(badCholesky)
}
norm := blas64.Nrm2(blas64.Vector{N: n, Data: work, Inc: 1})
if norm >= 1 {
// The updated matrix is not positive definite.
return false
}
norm = math.Sqrt((1 + norm) * (1 - norm))
cos := getFloats(n, false)
defer putFloats(cos)
sin := getFloats(n, false)
defer putFloats(sin)
for i := n - 1; i >= 0; i-- {
// Compute parameters of Givens matrices that zero elements of p
// backwards.
cos[i], sin[i], norm, _ = blas64.Rotg(norm, work[i])
if norm < 0 {
norm *= -1
cos[i] *= -1
sin[i] *= -1
}
}
umat := c.chol.mat
stride := umat.Stride
for i := n - 1; i >= 0; i-- {
work[i] = 0
// Apply Givens matrices to U.
// TODO(vladimir-ch): Use workspace to avoid modifying the
// receiver in case an invalid factorization is created.
blas64.Rot(
blas64.Vector{N: n - i, Data: work[i:n], Inc: 1},
blas64.Vector{N: n - i, Data: umat.Data[i*stride+i : i*stride+n], Inc: 1},
cos[i], sin[i])
if umat.Data[i*stride+i] == 0 {
// The matrix is singular (may rarely happen due to
// floating-point effects?).
ok = false
} else if umat.Data[i*stride+i] < 0 {
// Diagonal elements should be positive. If it happens
// that on the i-th row the diagonal is negative,
// multiply U from the left by an identity matrix that
// has -1 on the i-th row.
blas64.Scal(-1, blas64.Vector{N: n - i, Data: umat.Data[i*stride+i : i*stride+n], Inc: 1})
}
}
if ok {
c.updateCond(-1)
} else {
c.Reset()
}
return ok
}
func (c *Cholesky) valid() bool {
return c.chol != nil && !c.chol.IsEmpty()
}