k3s/vendor/gonum.org/v1/gonum/mat/qr.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

267 lines
7.3 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badQR = "mat: invalid QR factorization"
// QR is a type for creating and using the QR factorization of a matrix.
type QR struct {
qr *Dense
tau []float64
cond float64
}
func (qr *QR) updateCond(norm lapack.MatrixNorm) {
// Since A = Q*R, and Q is orthogonal, we get for the condition number κ
// κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Qᵀ|
// = |R| |R^-1| = κ(R),
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
n := qr.qr.mat.Cols
work := getFloats(3*n, false)
iwork := getInts(n, false)
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(norm, r.mat, work, iwork)
putFloats(work)
putInts(iwork)
qr.cond = 1 / v
}
// Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
// factorization always exists even if A is singular.
//
// The QR decomposition is a factorization of the matrix A such that A = Q * R.
// The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
// Q and R can be extracted using the QTo and RTo methods.
func (qr *QR) Factorize(a Matrix) {
qr.factorize(a, CondNorm)
}
func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m < n {
panic(ErrShape)
}
k := min(m, n)
if qr.qr == nil {
qr.qr = &Dense{}
}
qr.qr.CloneFrom(a)
work := []float64{0}
qr.tau = make([]float64, k)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
putFloats(work)
qr.updateCond(norm)
}
// isValid returns whether the receiver contains a factorization.
func (qr *QR) isValid() bool {
return qr.qr != nil && !qr.qr.IsEmpty()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (qr *QR) Cond() float64 {
if !qr.isValid() {
panic(badQR)
}
return qr.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
// and upper triangular matrices.
// RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
//
// If dst is empty, RTo will resize dst to be r×c. When dst is non-empty,
// RTo will panic if dst is not r×c. RTo will also panic if the receiver
// does not contain a successful factorization.
func (qr *QR) RTo(dst *Dense) {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if c != r2 || c != c2 {
panic(ErrShape)
}
}
// Disguise the QR as an upper triangular
t := &TriDense{
mat: blas64.Triangular{
N: c,
Stride: qr.qr.mat.Stride,
Data: qr.qr.mat.Data,
Uplo: blas.Upper,
Diag: blas.NonUnit,
},
cap: qr.qr.capCols,
}
dst.Copy(t)
// Zero below the triangular.
for i := r; i < c; i++ {
zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
}
}
// QTo extracts the r×r orthonormal matrix Q from a QR decomposition.
//
// If dst is empty, QTo will resize dst to be r×r. When dst is non-empty,
// QTo will panic if dst is not r×r. QTo will also panic if the receiver
// does not contain a successful factorization.
func (qr *QR) QTo(dst *Dense) {
if !qr.isValid() {
panic(badQR)
}
r, _ := qr.qr.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, r)
} else {
r2, c2 := dst.Dims()
if r != r2 || r != c2 {
panic(ErrShape)
}
dst.Zero()
}
// Set Q = I.
for i := 0; i < r*r; i += r + 1 {
dst.mat.Data[i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
putFloats(work)
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its QR factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find X such that ||A*X - B||_2 is minimized.
// If trans == true, find the minimum norm solution of Aᵀ * X = B.
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (qr *QR) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
br, bc := b.Dims()
// The QR solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into m at the end.
if trans {
if c != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(r, bc)
} else {
if r != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(c, bc)
}
// Do not need to worry about overlap between m and b because x has its own
// independent storage.
w := getWorkspace(max(r, c), bc, false)
w.Copy(b)
t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
if trans {
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := c; i < r; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, len(work))
putFloats(work)
} else {
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
}
// X was set above to be the correct size for the result.
dst.Copy(w)
putWorkspace(w)
if qr.cond > ConditionTolerance {
return Condition(qr.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations,
// Ax = b.
// See QR.SolveTo for the full documentation.
// SolveVecTo will panic if the receiver does not contain a factorization.
func (qr *QR) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
dst.reuseAsNonZeroed(r)
} else {
dst.reuseAsNonZeroed(c)
}
return qr.SolveTo(dst.asDense(), trans, bm)
}