k3s/vendor/gonum.org/v1/gonum/mat/svd.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

252 lines
7.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
// SVD is a type for creating and using the Singular Value Decomposition (SVD)
// of a matrix.
type SVD struct {
kind SVDKind
s []float64
u blas64.General
vt blas64.General
}
// SVDKind specifies the treatment of singular vectors during an SVD
// factorization.
type SVDKind int
const (
// SVDNone specifies that no singular vectors should be computed during
// the decomposition.
SVDNone SVDKind = 0
// SVDThinU specifies the thin decomposition for U should be computed.
SVDThinU SVDKind = 1 << (iota - 1)
// SVDFullU specifies the full decomposition for U should be computed.
SVDFullU
// SVDThinV specifies the thin decomposition for V should be computed.
SVDThinV
// SVDFullV specifies the full decomposition for V should be computed.
SVDFullV
// SVDThin is a convenience value for computing both thin vectors.
SVDThin SVDKind = SVDThinU | SVDThinV
// SVDFull is a convenience value for computing both full vectors.
SVDFull SVDKind = SVDFullU | SVDFullV
)
// succFact returns whether the receiver contains a successful factorization.
func (svd *SVD) succFact() bool {
return len(svd.s) != 0
}
// Factorize computes the singular value decomposition (SVD) of the input matrix A.
// The singular values of A are computed in all cases, while the singular
// vectors are optionally computed depending on the input kind.
//
// The full singular value decomposition (kind == SVDFull) is a factorization
// of an m×n matrix A of the form
// A = U * Σ * Vᵀ
// where Σ is an m×n diagonal matrix, U is an m×m orthogonal matrix, and V is an
// n×n orthogonal matrix. The diagonal elements of Σ are the singular values of A.
// The first min(m,n) columns of U and V are, respectively, the left and right
// singular vectors of A.
//
// Significant storage space can be saved by using the thin representation of
// the SVD (kind == SVDThin) instead of the full SVD, especially if
// m >> n or m << n. The thin SVD finds
// A = U~ * Σ * V~ᵀ
// where U~ is of size m×min(m,n), Σ is a diagonal matrix of size min(m,n)×min(m,n)
// and V~ is of size n×min(m,n).
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, routines that require a successful factorization will panic.
func (svd *SVD) Factorize(a Matrix, kind SVDKind) (ok bool) {
// kill previous factorization
svd.s = svd.s[:0]
svd.kind = kind
m, n := a.Dims()
var jobU, jobVT lapack.SVDJob
// TODO(btracey): This code should be modified to have the smaller
// matrix written in-place into aCopy when the lapack/native/dgesvd
// implementation is complete.
switch {
case kind&SVDFullU != 0:
jobU = lapack.SVDAll
svd.u = blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: use(svd.u.Data, m*m),
}
case kind&SVDThinU != 0:
jobU = lapack.SVDStore
svd.u = blas64.General{
Rows: m,
Cols: min(m, n),
Stride: min(m, n),
Data: use(svd.u.Data, m*min(m, n)),
}
default:
jobU = lapack.SVDNone
}
switch {
case kind&SVDFullV != 0:
svd.vt = blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: use(svd.vt.Data, n*n),
}
jobVT = lapack.SVDAll
case kind&SVDThinV != 0:
svd.vt = blas64.General{
Rows: min(m, n),
Cols: n,
Stride: n,
Data: use(svd.vt.Data, min(m, n)*n),
}
jobVT = lapack.SVDStore
default:
jobVT = lapack.SVDNone
}
// A is destroyed on call, so copy the matrix.
aCopy := DenseCopyOf(a)
svd.kind = kind
svd.s = use(svd.s, min(m, n))
work := []float64{0}
lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, -1)
work = getFloats(int(work[0]), false)
ok = lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, len(work))
putFloats(work)
if !ok {
svd.kind = 0
}
return ok
}
// Kind returns the SVDKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (svd *SVD) Kind() SVDKind {
if !svd.succFact() {
return -1
}
return svd.kind
}
// Cond returns the 2-norm condition number for the factorized matrix. Cond will
// panic if the receiver does not contain a successful factorization.
func (svd *SVD) Cond() float64 {
if !svd.succFact() {
panic(badFact)
}
return svd.s[0] / svd.s[len(svd.s)-1]
}
// Values returns the singular values of the factorized matrix in descending order.
//
// If the input slice is non-nil, the values will be stored in-place into
// the slice. In this case, the slice must have length min(m,n), and Values will
// panic with ErrSliceLengthMismatch otherwise. If the input slice is nil, a new
// slice of the appropriate length will be allocated and returned.
//
// Values will panic if the receiver does not contain a successful factorization.
func (svd *SVD) Values(s []float64) []float64 {
if !svd.succFact() {
panic(badFact)
}
if s == nil {
s = make([]float64, len(svd.s))
}
if len(s) != len(svd.s) {
panic(ErrSliceLengthMismatch)
}
copy(s, svd.s)
return s
}
// UTo extracts the matrix U from the singular value decomposition. The first
// min(m,n) columns are the left singular vectors and correspond to the singular
// values as returned from SVD.Values.
//
// If dst is empty, UTo will resize dst to be m×m if the full U was computed
// and size m×min(m,n) if the thin U was computed. When dst is non-empty, then
// UTo will panic if dst is not the appropriate size. UTo will also panic if
// the receiver does not contain a successful factorization, or if U was
// not computed during factorization.
func (svd *SVD) UTo(dst *Dense) {
if !svd.succFact() {
panic(badFact)
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
r := svd.u.Rows
c := svd.u.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: svd.u,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// VTo extracts the matrix V from the singular value decomposition. The first
// min(m,n) columns are the right singular vectors and correspond to the singular
// values as returned from SVD.Values.
//
// If dst is empty, VTo will resize dst to be n×n if the full V was computed
// and size n×min(m,n) if the thin V was computed. When dst is non-empty, then
// VTo will panic if dst is not the appropriate size. VTo will also panic if
// the receiver does not contain a successful factorization, or if V was
// not computed during factorization.
func (svd *SVD) VTo(dst *Dense) {
if !svd.succFact() {
panic(badFact)
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
r := svd.vt.Rows
c := svd.vt.Cols
if dst.IsEmpty() {
dst.ReuseAs(c, r)
} else {
r2, c2 := dst.Dims()
if c != r2 || r != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: svd.vt,
capRows: r,
capCols: c,
}
dst.Copy(tmp.T())
}