mirror of
https://github.com/k3s-io/k3s.git
synced 2024-06-07 19:41:36 +00:00
663 lines
16 KiB
Go
663 lines
16 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package mat
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
var (
|
||
symDense *SymDense
|
||
|
||
_ Matrix = symDense
|
||
_ allMatrix = symDense
|
||
_ denseMatrix = symDense
|
||
_ Symmetric = symDense
|
||
_ RawSymmetricer = symDense
|
||
_ MutableSymmetric = symDense
|
||
)
|
||
|
||
const (
|
||
badSymTriangle = "mat: blas64.Symmetric not upper"
|
||
badSymCap = "mat: bad capacity for SymDense"
|
||
)
|
||
|
||
// SymDense is a symmetric matrix that uses dense storage. SymDense
|
||
// matrices are stored in the upper triangle.
|
||
type SymDense struct {
|
||
mat blas64.Symmetric
|
||
cap int
|
||
}
|
||
|
||
// Symmetric represents a symmetric matrix (where the element at {i, j} equals
|
||
// the element at {j, i}). Symmetric matrices are always square.
|
||
type Symmetric interface {
|
||
Matrix
|
||
// Symmetric returns the number of rows/columns in the matrix.
|
||
Symmetric() int
|
||
}
|
||
|
||
// A RawSymmetricer can return a view of itself as a BLAS Symmetric matrix.
|
||
type RawSymmetricer interface {
|
||
RawSymmetric() blas64.Symmetric
|
||
}
|
||
|
||
// A MutableSymmetric can set elements of a symmetric matrix.
|
||
type MutableSymmetric interface {
|
||
Symmetric
|
||
SetSym(i, j int, v float64)
|
||
}
|
||
|
||
// NewSymDense creates a new Symmetric matrix with n rows and columns. If data == nil,
|
||
// a new slice is allocated for the backing slice. If len(data) == n*n, data is
|
||
// used as the backing slice, and changes to the elements of the returned SymDense
|
||
// will be reflected in data. If neither of these is true, NewSymDense will panic.
|
||
// NewSymDense will panic if n is zero.
|
||
//
|
||
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
|
||
// element in the data slice is the {i, j}-th element in the matrix.
|
||
// Only the values in the upper triangular portion of the matrix are used.
|
||
func NewSymDense(n int, data []float64) *SymDense {
|
||
if n <= 0 {
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
panic("mat: negative dimension")
|
||
}
|
||
if data != nil && n*n != len(data) {
|
||
panic(ErrShape)
|
||
}
|
||
if data == nil {
|
||
data = make([]float64, n*n)
|
||
}
|
||
return &SymDense{
|
||
mat: blas64.Symmetric{
|
||
N: n,
|
||
Stride: n,
|
||
Data: data,
|
||
Uplo: blas.Upper,
|
||
},
|
||
cap: n,
|
||
}
|
||
}
|
||
|
||
// Dims returns the number of rows and columns in the matrix.
|
||
func (s *SymDense) Dims() (r, c int) {
|
||
return s.mat.N, s.mat.N
|
||
}
|
||
|
||
// Caps returns the number of rows and columns in the backing matrix.
|
||
func (s *SymDense) Caps() (r, c int) {
|
||
return s.cap, s.cap
|
||
}
|
||
|
||
// T returns the receiver, the transpose of a symmetric matrix.
|
||
func (s *SymDense) T() Matrix {
|
||
return s
|
||
}
|
||
|
||
// Symmetric implements the Symmetric interface and returns the number of rows
|
||
// and columns in the matrix.
|
||
func (s *SymDense) Symmetric() int {
|
||
return s.mat.N
|
||
}
|
||
|
||
// RawSymmetric returns the matrix as a blas64.Symmetric. The returned
|
||
// value must be stored in upper triangular format.
|
||
func (s *SymDense) RawSymmetric() blas64.Symmetric {
|
||
return s.mat
|
||
}
|
||
|
||
// SetRawSymmetric sets the underlying blas64.Symmetric used by the receiver.
|
||
// Changes to elements in the receiver following the call will be reflected
|
||
// in the input.
|
||
//
|
||
// The supplied Symmetric must use blas.Upper storage format.
|
||
func (s *SymDense) SetRawSymmetric(mat blas64.Symmetric) {
|
||
if mat.Uplo != blas.Upper {
|
||
panic(badSymTriangle)
|
||
}
|
||
s.cap = mat.N
|
||
s.mat = mat
|
||
}
|
||
|
||
// Reset empties the matrix so that it can be reused as the
|
||
// receiver of a dimensionally restricted operation.
|
||
//
|
||
// Reset should not be used when the matrix shares backing data.
|
||
// See the Reseter interface for more information.
|
||
func (s *SymDense) Reset() {
|
||
// N and Stride must be zeroed in unison.
|
||
s.mat.N, s.mat.Stride = 0, 0
|
||
s.mat.Data = s.mat.Data[:0]
|
||
}
|
||
|
||
// ReuseAsSym changes the receiver if it IsEmpty() to be of size n×n.
|
||
//
|
||
// ReuseAsSym re-uses the backing data slice if it has sufficient capacity,
|
||
// otherwise a new slice is allocated. The backing data is zero on return.
|
||
//
|
||
// ReuseAsSym panics if the receiver is not empty, and panics if
|
||
// the input size is less than one. To empty the receiver for re-use,
|
||
// Reset should be used.
|
||
func (s *SymDense) ReuseAsSym(n int) {
|
||
if n <= 0 {
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
panic(ErrNegativeDimension)
|
||
}
|
||
if !s.IsEmpty() {
|
||
panic(ErrReuseNonEmpty)
|
||
}
|
||
s.reuseAsZeroed(n)
|
||
}
|
||
|
||
// Zero sets all of the matrix elements to zero.
|
||
func (s *SymDense) Zero() {
|
||
for i := 0; i < s.mat.N; i++ {
|
||
zero(s.mat.Data[i*s.mat.Stride+i : i*s.mat.Stride+s.mat.N])
|
||
}
|
||
}
|
||
|
||
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
|
||
// receiver for size-restricted operations. The receiver can be emptied using
|
||
// Reset.
|
||
func (s *SymDense) IsEmpty() bool {
|
||
// It must be the case that m.Dims() returns
|
||
// zeros in this case. See comment in Reset().
|
||
return s.mat.N == 0
|
||
}
|
||
|
||
// reuseAsNonZeroed resizes an empty matrix to a n×n matrix,
|
||
// or checks that a non-empty matrix is n×n.
|
||
func (s *SymDense) reuseAsNonZeroed(n int) {
|
||
// reuseAsNonZeroed must be kept in sync with reuseAsZeroed.
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
if s.mat.N > s.cap {
|
||
panic(badSymCap)
|
||
}
|
||
if s.IsEmpty() {
|
||
s.mat = blas64.Symmetric{
|
||
N: n,
|
||
Stride: n,
|
||
Data: use(s.mat.Data, n*n),
|
||
Uplo: blas.Upper,
|
||
}
|
||
s.cap = n
|
||
return
|
||
}
|
||
if s.mat.Uplo != blas.Upper {
|
||
panic(badSymTriangle)
|
||
}
|
||
if s.mat.N != n {
|
||
panic(ErrShape)
|
||
}
|
||
}
|
||
|
||
// reuseAsNonZeroed resizes an empty matrix to a n×n matrix,
|
||
// or checks that a non-empty matrix is n×n. It then zeros the
|
||
// elements of the matrix.
|
||
func (s *SymDense) reuseAsZeroed(n int) {
|
||
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
if s.mat.N > s.cap {
|
||
panic(badSymCap)
|
||
}
|
||
if s.IsEmpty() {
|
||
s.mat = blas64.Symmetric{
|
||
N: n,
|
||
Stride: n,
|
||
Data: useZeroed(s.mat.Data, n*n),
|
||
Uplo: blas.Upper,
|
||
}
|
||
s.cap = n
|
||
return
|
||
}
|
||
if s.mat.Uplo != blas.Upper {
|
||
panic(badSymTriangle)
|
||
}
|
||
if s.mat.N != n {
|
||
panic(ErrShape)
|
||
}
|
||
s.Zero()
|
||
}
|
||
|
||
func (s *SymDense) isolatedWorkspace(a Symmetric) (w *SymDense, restore func()) {
|
||
n := a.Symmetric()
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
w = getWorkspaceSym(n, false)
|
||
return w, func() {
|
||
s.CopySym(w)
|
||
putWorkspaceSym(w)
|
||
}
|
||
}
|
||
|
||
// DiagView returns the diagonal as a matrix backed by the original data.
|
||
func (s *SymDense) DiagView() Diagonal {
|
||
n := s.mat.N
|
||
return &DiagDense{
|
||
mat: blas64.Vector{
|
||
N: n,
|
||
Inc: s.mat.Stride + 1,
|
||
Data: s.mat.Data[:(n-1)*s.mat.Stride+n],
|
||
},
|
||
}
|
||
}
|
||
|
||
func (s *SymDense) AddSym(a, b Symmetric) {
|
||
n := a.Symmetric()
|
||
if n != b.Symmetric() {
|
||
panic(ErrShape)
|
||
}
|
||
s.reuseAsNonZeroed(n)
|
||
|
||
if a, ok := a.(RawSymmetricer); ok {
|
||
if b, ok := b.(RawSymmetricer); ok {
|
||
amat, bmat := a.RawSymmetric(), b.RawSymmetric()
|
||
if s != a {
|
||
s.checkOverlap(generalFromSymmetric(amat))
|
||
}
|
||
if s != b {
|
||
s.checkOverlap(generalFromSymmetric(bmat))
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
btmp := bmat.Data[i*bmat.Stride+i : i*bmat.Stride+n]
|
||
stmp := s.mat.Data[i*s.mat.Stride+i : i*s.mat.Stride+n]
|
||
for j, v := range amat.Data[i*amat.Stride+i : i*amat.Stride+n] {
|
||
stmp[j] = v + btmp[j]
|
||
}
|
||
}
|
||
return
|
||
}
|
||
}
|
||
|
||
s.checkOverlapMatrix(a)
|
||
s.checkOverlapMatrix(b)
|
||
for i := 0; i < n; i++ {
|
||
stmp := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
|
||
for j := i; j < n; j++ {
|
||
stmp[j] = a.At(i, j) + b.At(i, j)
|
||
}
|
||
}
|
||
}
|
||
|
||
func (s *SymDense) CopySym(a Symmetric) int {
|
||
n := a.Symmetric()
|
||
n = min(n, s.mat.N)
|
||
if n == 0 {
|
||
return 0
|
||
}
|
||
switch a := a.(type) {
|
||
case RawSymmetricer:
|
||
amat := a.RawSymmetric()
|
||
if amat.Uplo != blas.Upper {
|
||
panic(badSymTriangle)
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
copy(s.mat.Data[i*s.mat.Stride+i:i*s.mat.Stride+n], amat.Data[i*amat.Stride+i:i*amat.Stride+n])
|
||
}
|
||
default:
|
||
for i := 0; i < n; i++ {
|
||
stmp := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
|
||
for j := i; j < n; j++ {
|
||
stmp[j] = a.At(i, j)
|
||
}
|
||
}
|
||
}
|
||
return n
|
||
}
|
||
|
||
// SymRankOne performs a symmetric rank-one update to the matrix a with x,
|
||
// which is treated as a column vector, and stores the result in the receiver
|
||
// s = a + alpha * x * xᵀ
|
||
func (s *SymDense) SymRankOne(a Symmetric, alpha float64, x Vector) {
|
||
n := x.Len()
|
||
if a.Symmetric() != n {
|
||
panic(ErrShape)
|
||
}
|
||
s.reuseAsNonZeroed(n)
|
||
|
||
if s != a {
|
||
if rs, ok := a.(RawSymmetricer); ok {
|
||
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
||
}
|
||
s.CopySym(a)
|
||
}
|
||
|
||
xU, _ := untransposeExtract(x)
|
||
if rv, ok := xU.(*VecDense); ok {
|
||
r, c := xU.Dims()
|
||
xmat := rv.mat
|
||
s.checkOverlap(generalFromVector(xmat, r, c))
|
||
blas64.Syr(alpha, xmat, s.mat)
|
||
return
|
||
}
|
||
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
s.set(i, j, s.at(i, j)+alpha*x.AtVec(i)*x.AtVec(j))
|
||
}
|
||
}
|
||
}
|
||
|
||
// SymRankK performs a symmetric rank-k update to the matrix a and stores the
|
||
// result into the receiver. If a is zero, see SymOuterK.
|
||
// s = a + alpha * x * x'
|
||
func (s *SymDense) SymRankK(a Symmetric, alpha float64, x Matrix) {
|
||
n := a.Symmetric()
|
||
r, _ := x.Dims()
|
||
if r != n {
|
||
panic(ErrShape)
|
||
}
|
||
xMat, aTrans := untransposeExtract(x)
|
||
var g blas64.General
|
||
if rm, ok := xMat.(*Dense); ok {
|
||
g = rm.mat
|
||
} else {
|
||
g = DenseCopyOf(x).mat
|
||
aTrans = false
|
||
}
|
||
if a != s {
|
||
if rs, ok := a.(RawSymmetricer); ok {
|
||
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
||
}
|
||
s.reuseAsNonZeroed(n)
|
||
s.CopySym(a)
|
||
}
|
||
t := blas.NoTrans
|
||
if aTrans {
|
||
t = blas.Trans
|
||
}
|
||
blas64.Syrk(t, alpha, g, 1, s.mat)
|
||
}
|
||
|
||
// SymOuterK calculates the outer product of x with itself and stores
|
||
// the result into the receiver. It is equivalent to the matrix
|
||
// multiplication
|
||
// s = alpha * x * x'.
|
||
// In order to update an existing matrix, see SymRankOne.
|
||
func (s *SymDense) SymOuterK(alpha float64, x Matrix) {
|
||
n, _ := x.Dims()
|
||
switch {
|
||
case s.IsEmpty():
|
||
s.mat = blas64.Symmetric{
|
||
N: n,
|
||
Stride: n,
|
||
Data: useZeroed(s.mat.Data, n*n),
|
||
Uplo: blas.Upper,
|
||
}
|
||
s.cap = n
|
||
s.SymRankK(s, alpha, x)
|
||
case s.mat.Uplo != blas.Upper:
|
||
panic(badSymTriangle)
|
||
case s.mat.N == n:
|
||
if s == x {
|
||
w := getWorkspaceSym(n, true)
|
||
w.SymRankK(w, alpha, x)
|
||
s.CopySym(w)
|
||
putWorkspaceSym(w)
|
||
} else {
|
||
switch r := x.(type) {
|
||
case RawMatrixer:
|
||
s.checkOverlap(r.RawMatrix())
|
||
case RawSymmetricer:
|
||
s.checkOverlap(generalFromSymmetric(r.RawSymmetric()))
|
||
case RawTriangular:
|
||
s.checkOverlap(generalFromTriangular(r.RawTriangular()))
|
||
}
|
||
// Only zero the upper triangle.
|
||
for i := 0; i < n; i++ {
|
||
ri := i * s.mat.Stride
|
||
zero(s.mat.Data[ri+i : ri+n])
|
||
}
|
||
s.SymRankK(s, alpha, x)
|
||
}
|
||
default:
|
||
panic(ErrShape)
|
||
}
|
||
}
|
||
|
||
// RankTwo performs a symmetric rank-two update to the matrix a with the
|
||
// vectors x and y, which are treated as column vectors, and stores the
|
||
// result in the receiver
|
||
// m = a + alpha * (x * yᵀ + y * xᵀ)
|
||
func (s *SymDense) RankTwo(a Symmetric, alpha float64, x, y Vector) {
|
||
n := s.mat.N
|
||
if x.Len() != n {
|
||
panic(ErrShape)
|
||
}
|
||
if y.Len() != n {
|
||
panic(ErrShape)
|
||
}
|
||
|
||
if s != a {
|
||
if rs, ok := a.(RawSymmetricer); ok {
|
||
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
||
}
|
||
}
|
||
|
||
var xmat, ymat blas64.Vector
|
||
fast := true
|
||
xU, _ := untransposeExtract(x)
|
||
if rv, ok := xU.(*VecDense); ok {
|
||
r, c := xU.Dims()
|
||
xmat = rv.mat
|
||
s.checkOverlap(generalFromVector(xmat, r, c))
|
||
} else {
|
||
fast = false
|
||
}
|
||
yU, _ := untransposeExtract(y)
|
||
if rv, ok := yU.(*VecDense); ok {
|
||
r, c := yU.Dims()
|
||
ymat = rv.mat
|
||
s.checkOverlap(generalFromVector(ymat, r, c))
|
||
} else {
|
||
fast = false
|
||
}
|
||
|
||
if s != a {
|
||
if rs, ok := a.(RawSymmetricer); ok {
|
||
s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
|
||
}
|
||
s.reuseAsNonZeroed(n)
|
||
s.CopySym(a)
|
||
}
|
||
|
||
if fast {
|
||
if s != a {
|
||
s.reuseAsNonZeroed(n)
|
||
s.CopySym(a)
|
||
}
|
||
blas64.Syr2(alpha, xmat, ymat, s.mat)
|
||
return
|
||
}
|
||
|
||
for i := 0; i < n; i++ {
|
||
s.reuseAsNonZeroed(n)
|
||
for j := i; j < n; j++ {
|
||
s.set(i, j, a.At(i, j)+alpha*(x.AtVec(i)*y.AtVec(j)+y.AtVec(i)*x.AtVec(j)))
|
||
}
|
||
}
|
||
}
|
||
|
||
// ScaleSym multiplies the elements of a by f, placing the result in the receiver.
|
||
func (s *SymDense) ScaleSym(f float64, a Symmetric) {
|
||
n := a.Symmetric()
|
||
s.reuseAsNonZeroed(n)
|
||
if a, ok := a.(RawSymmetricer); ok {
|
||
amat := a.RawSymmetric()
|
||
if s != a {
|
||
s.checkOverlap(generalFromSymmetric(amat))
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
s.mat.Data[i*s.mat.Stride+j] = f * amat.Data[i*amat.Stride+j]
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
s.mat.Data[i*s.mat.Stride+j] = f * a.At(i, j)
|
||
}
|
||
}
|
||
}
|
||
|
||
// SubsetSym extracts a subset of the rows and columns of the matrix a and stores
|
||
// the result in-place into the receiver. The resulting matrix size is
|
||
// len(set)×len(set). Specifically, at the conclusion of SubsetSym,
|
||
// s.At(i, j) equals a.At(set[i], set[j]). Note that the supplied set does not
|
||
// have to be a strict subset, dimension repeats are allowed.
|
||
func (s *SymDense) SubsetSym(a Symmetric, set []int) {
|
||
n := len(set)
|
||
na := a.Symmetric()
|
||
s.reuseAsNonZeroed(n)
|
||
var restore func()
|
||
if a == s {
|
||
s, restore = s.isolatedWorkspace(a)
|
||
defer restore()
|
||
}
|
||
|
||
if a, ok := a.(RawSymmetricer); ok {
|
||
raw := a.RawSymmetric()
|
||
if s != a {
|
||
s.checkOverlap(generalFromSymmetric(raw))
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ssub := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
|
||
r := set[i]
|
||
rsub := raw.Data[r*raw.Stride : r*raw.Stride+na]
|
||
for j := i; j < n; j++ {
|
||
c := set[j]
|
||
if r <= c {
|
||
ssub[j] = rsub[c]
|
||
} else {
|
||
ssub[j] = raw.Data[c*raw.Stride+r]
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
s.mat.Data[i*s.mat.Stride+j] = a.At(set[i], set[j])
|
||
}
|
||
}
|
||
}
|
||
|
||
// SliceSym returns a new Matrix that shares backing data with the receiver.
|
||
// The returned matrix starts at {i,i} of the receiver and extends k-i rows
|
||
// and columns. The final row and column in the resulting matrix is k-1.
|
||
// SliceSym panics with ErrIndexOutOfRange if the slice is outside the
|
||
// capacity of the receiver.
|
||
func (s *SymDense) SliceSym(i, k int) Symmetric {
|
||
sz := s.cap
|
||
if i < 0 || sz < i || k < i || sz < k {
|
||
panic(ErrIndexOutOfRange)
|
||
}
|
||
v := *s
|
||
v.mat.Data = s.mat.Data[i*s.mat.Stride+i : (k-1)*s.mat.Stride+k]
|
||
v.mat.N = k - i
|
||
v.cap = s.cap - i
|
||
return &v
|
||
}
|
||
|
||
// Trace returns the trace of the matrix.
|
||
func (s *SymDense) Trace() float64 {
|
||
// TODO(btracey): could use internal asm sum routine.
|
||
var v float64
|
||
for i := 0; i < s.mat.N; i++ {
|
||
v += s.mat.Data[i*s.mat.Stride+i]
|
||
}
|
||
return v
|
||
}
|
||
|
||
// GrowSym returns the receiver expanded by n rows and n columns. If the
|
||
// dimensions of the expanded matrix are outside the capacity of the receiver
|
||
// a new allocation is made, otherwise not. Note that the receiver itself is
|
||
// not modified during the call to GrowSquare.
|
||
func (s *SymDense) GrowSym(n int) Symmetric {
|
||
if n < 0 {
|
||
panic(ErrIndexOutOfRange)
|
||
}
|
||
if n == 0 {
|
||
return s
|
||
}
|
||
var v SymDense
|
||
n += s.mat.N
|
||
if n > s.cap {
|
||
v.mat = blas64.Symmetric{
|
||
N: n,
|
||
Stride: n,
|
||
Uplo: blas.Upper,
|
||
Data: make([]float64, n*n),
|
||
}
|
||
v.cap = n
|
||
// Copy elements, including those not currently visible. Use a temporary
|
||
// structure to avoid modifying the receiver.
|
||
var tmp SymDense
|
||
tmp.mat = blas64.Symmetric{
|
||
N: s.cap,
|
||
Stride: s.mat.Stride,
|
||
Data: s.mat.Data,
|
||
Uplo: s.mat.Uplo,
|
||
}
|
||
tmp.cap = s.cap
|
||
v.CopySym(&tmp)
|
||
return &v
|
||
}
|
||
v.mat = blas64.Symmetric{
|
||
N: n,
|
||
Stride: s.mat.Stride,
|
||
Uplo: blas.Upper,
|
||
Data: s.mat.Data[:(n-1)*s.mat.Stride+n],
|
||
}
|
||
v.cap = s.cap
|
||
return &v
|
||
}
|
||
|
||
// PowPSD computes a^pow where a is a positive symmetric definite matrix.
|
||
//
|
||
// PowPSD returns an error if the matrix is not not positive symmetric definite
|
||
// or the Eigendecomposition is not successful.
|
||
func (s *SymDense) PowPSD(a Symmetric, pow float64) error {
|
||
dim := a.Symmetric()
|
||
s.reuseAsNonZeroed(dim)
|
||
|
||
var eigen EigenSym
|
||
ok := eigen.Factorize(a, true)
|
||
if !ok {
|
||
return ErrFailedEigen
|
||
}
|
||
values := eigen.Values(nil)
|
||
for i, v := range values {
|
||
if v <= 0 {
|
||
return ErrNotPSD
|
||
}
|
||
values[i] = math.Pow(v, pow)
|
||
}
|
||
var u Dense
|
||
eigen.VectorsTo(&u)
|
||
|
||
s.SymOuterK(values[0], u.ColView(0))
|
||
|
||
var v VecDense
|
||
for i := 1; i < dim; i++ {
|
||
v.ColViewOf(&u, i)
|
||
s.SymRankOne(s, values[i], &v)
|
||
}
|
||
return nil
|
||
}
|