k3s/vendor/gonum.org/v1/gonum/mat/triangular.go
Darren Shepherd 53ed13bf29 Update vendor
2020-04-18 23:59:08 -07:00

746 lines
18 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
triDense *TriDense
_ Matrix = triDense
_ allMatrix = triDense
_ denseMatrix = triDense
_ Triangular = triDense
_ RawTriangular = triDense
_ MutableTriangular = triDense
_ NonZeroDoer = triDense
_ RowNonZeroDoer = triDense
_ ColNonZeroDoer = triDense
)
const badTriCap = "mat: bad capacity for TriDense"
// TriDense represents an upper or lower triangular matrix in dense storage
// format.
type TriDense struct {
mat blas64.Triangular
cap int
}
// Triangular represents a triangular matrix. Triangular matrices are always square.
type Triangular interface {
Matrix
// Triangle returns the number of rows/columns in the matrix and its
// orientation.
Triangle() (n int, kind TriKind)
// TTri is the equivalent of the T() method in the Matrix interface but
// guarantees the transpose is of triangular type.
TTri() Triangular
}
// A RawTriangular can return a blas64.Triangular representation of the receiver.
// Changes to the blas64.Triangular.Data slice will be reflected in the original
// matrix, changes to the N, Stride, Uplo and Diag fields will not.
type RawTriangular interface {
RawTriangular() blas64.Triangular
}
// A MutableTriangular can set elements of a triangular matrix.
type MutableTriangular interface {
Triangular
SetTri(i, j int, v float64)
}
var (
_ Matrix = TransposeTri{}
_ Triangular = TransposeTri{}
_ UntransposeTrier = TransposeTri{}
)
// TransposeTri is a type for performing an implicit transpose of a Triangular
// matrix. It implements the Triangular interface, returning values from the
// transpose of the matrix within.
type TransposeTri struct {
Triangular Triangular
}
// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the Triangular field.
func (t TransposeTri) At(i, j int) float64 {
return t.Triangular.At(j, i)
}
// Dims returns the dimensions of the transposed matrix. Triangular matrices are
// square and thus this is the same size as the original Triangular.
func (t TransposeTri) Dims() (r, c int) {
c, r = t.Triangular.Dims()
return r, c
}
// T performs an implicit transpose by returning the Triangular field.
func (t TransposeTri) T() Matrix {
return t.Triangular
}
// Triangle returns the number of rows/columns in the matrix and its orientation.
func (t TransposeTri) Triangle() (int, TriKind) {
n, upper := t.Triangular.Triangle()
return n, !upper
}
// TTri performs an implicit transpose by returning the Triangular field.
func (t TransposeTri) TTri() Triangular {
return t.Triangular
}
// Untranspose returns the Triangular field.
func (t TransposeTri) Untranspose() Matrix {
return t.Triangular
}
func (t TransposeTri) UntransposeTri() Triangular {
return t.Triangular
}
// NewTriDense creates a new Triangular matrix with n rows and columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == n*n, data is
// used as the backing slice, and changes to the elements of the returned TriDense
// will be reflected in data. If neither of these is true, NewTriDense will panic.
// NewTriDense will panic if n is zero.
//
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
// element in the data slice is the {i, j}-th element in the matrix.
// Only the values in the triangular portion corresponding to kind are used.
func NewTriDense(n int, kind TriKind, data []float64) *TriDense {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic("mat: negative dimension")
}
if data != nil && len(data) != n*n {
panic(ErrShape)
}
if data == nil {
data = make([]float64, n*n)
}
uplo := blas.Lower
if kind == Upper {
uplo = blas.Upper
}
return &TriDense{
mat: blas64.Triangular{
N: n,
Stride: n,
Data: data,
Uplo: uplo,
Diag: blas.NonUnit,
},
cap: n,
}
}
func (t *TriDense) Dims() (r, c int) {
return t.mat.N, t.mat.N
}
// Triangle returns the dimension of t and its orientation. The returned
// orientation is only valid when n is not empty.
func (t *TriDense) Triangle() (n int, kind TriKind) {
return t.mat.N, t.triKind()
}
func (t *TriDense) isUpper() bool {
return isUpperUplo(t.mat.Uplo)
}
func (t *TriDense) triKind() TriKind {
return TriKind(isUpperUplo(t.mat.Uplo))
}
func isUpperUplo(u blas.Uplo) bool {
switch u {
case blas.Upper:
return true
case blas.Lower:
return false
default:
panic(badTriangle)
}
}
func uploToTriKind(u blas.Uplo) TriKind {
switch u {
case blas.Upper:
return Upper
case blas.Lower:
return Lower
default:
panic(badTriangle)
}
}
// asSymBlas returns the receiver restructured as a blas64.Symmetric with the
// same backing memory. Panics if the receiver is unit.
// This returns a blas64.Symmetric and not a *SymDense because SymDense can only
// be upper triangular.
func (t *TriDense) asSymBlas() blas64.Symmetric {
if t.mat.Diag == blas.Unit {
panic("mat: cannot convert unit TriDense into blas64.Symmetric")
}
return blas64.Symmetric{
N: t.mat.N,
Stride: t.mat.Stride,
Data: t.mat.Data,
Uplo: t.mat.Uplo,
}
}
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (t *TriDense) T() Matrix {
return Transpose{t}
}
// TTri performs an implicit transpose by returning the receiver inside a TransposeTri.
func (t *TriDense) TTri() Triangular {
return TransposeTri{t}
}
func (t *TriDense) RawTriangular() blas64.Triangular {
return t.mat
}
// SetRawTriangular sets the underlying blas64.Triangular used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
//
// The supplied Triangular must not use blas.Unit storage format.
func (t *TriDense) SetRawTriangular(mat blas64.Triangular) {
if mat.Diag == blas.Unit {
panic("mat: cannot set TriDense with Unit storage format")
}
t.cap = mat.N
t.mat = mat
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (t *TriDense) Reset() {
// N and Stride must be zeroed in unison.
t.mat.N, t.mat.Stride = 0, 0
// Defensively zero Uplo to ensure
// it is set correctly later.
t.mat.Uplo = 0
t.mat.Data = t.mat.Data[:0]
}
// Zero sets all of the matrix elements to zero.
func (t *TriDense) Zero() {
if t.isUpper() {
for i := 0; i < t.mat.N; i++ {
zero(t.mat.Data[i*t.mat.Stride+i : i*t.mat.Stride+t.mat.N])
}
return
}
for i := 0; i < t.mat.N; i++ {
zero(t.mat.Data[i*t.mat.Stride : i*t.mat.Stride+i+1])
}
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (t *TriDense) IsEmpty() bool {
// It must be the case that t.Dims() returns
// zeros in this case. See comment in Reset().
return t.mat.Stride == 0
}
// untranspose untransposes a matrix if applicable. If a is an Untransposer, then
// untranspose returns the underlying matrix and true. If it is not, then it returns
// the input matrix and false.
func untransposeTri(a Triangular) (Triangular, bool) {
if ut, ok := a.(UntransposeTrier); ok {
return ut.UntransposeTri(), true
}
return a, false
}
// ReuseAsTri changes the receiver if it IsEmpty() to be of size n×n.
//
// ReuseAsTri re-uses the backing data slice if it has sufficient capacity,
// otherwise a new slice is allocated. The backing data is zero on return.
//
// ReuseAsTri panics if the receiver is not empty, and panics if
// the input size is less than one. To empty the receiver for re-use,
// Reset should be used.
func (t *TriDense) ReuseAsTri(n int, kind TriKind) {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if !t.IsEmpty() {
panic(ErrReuseNonEmpty)
}
t.reuseAsZeroed(n, kind)
}
// reuseAsNonZeroed resizes a zero receiver to an n×n triangular matrix with the given
// orientation. If the receiver is non-zero, reuseAsNonZeroed checks that the receiver
// is the correct size and orientation.
func (t *TriDense) reuseAsNonZeroed(n int, kind TriKind) {
// reuseAsNonZeroed must be kept in sync with reuseAsZeroed.
if n == 0 {
panic(ErrZeroLength)
}
ul := blas.Lower
if kind == Upper {
ul = blas.Upper
}
if t.mat.N > t.cap {
panic(badTriCap)
}
if t.IsEmpty() {
t.mat = blas64.Triangular{
N: n,
Stride: n,
Diag: blas.NonUnit,
Data: use(t.mat.Data, n*n),
Uplo: ul,
}
t.cap = n
return
}
if t.mat.N != n {
panic(ErrShape)
}
if t.mat.Uplo != ul {
panic(ErrTriangle)
}
}
// reuseAsZeroed resizes a zero receiver to an n×n triangular matrix with the given
// orientation. If the receiver is non-zero, reuseAsZeroed checks that the receiver
// is the correct size and orientation. It then zeros out the matrix data.
func (t *TriDense) reuseAsZeroed(n int, kind TriKind) {
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
if n == 0 {
panic(ErrZeroLength)
}
ul := blas.Lower
if kind == Upper {
ul = blas.Upper
}
if t.mat.N > t.cap {
panic(badTriCap)
}
if t.IsEmpty() {
t.mat = blas64.Triangular{
N: n,
Stride: n,
Diag: blas.NonUnit,
Data: useZeroed(t.mat.Data, n*n),
Uplo: ul,
}
t.cap = n
return
}
if t.mat.N != n {
panic(ErrShape)
}
if t.mat.Uplo != ul {
panic(ErrTriangle)
}
t.Zero()
}
// isolatedWorkspace returns a new TriDense matrix w with the size of a and
// returns a callback to defer which performs cleanup at the return of the call.
// This should be used when a method receiver is the same pointer as an input argument.
func (t *TriDense) isolatedWorkspace(a Triangular) (w *TriDense, restore func()) {
n, kind := a.Triangle()
if n == 0 {
panic(ErrZeroLength)
}
w = getWorkspaceTri(n, kind, false)
return w, func() {
t.Copy(w)
putWorkspaceTri(w)
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (t *TriDense) DiagView() Diagonal {
if t.mat.Diag == blas.Unit {
panic("mat: cannot take view of Unit diagonal")
}
n := t.mat.N
return &DiagDense{
mat: blas64.Vector{
N: n,
Inc: t.mat.Stride + 1,
Data: t.mat.Data[:(n-1)*t.mat.Stride+n],
},
}
}
// Copy makes a copy of elements of a into the receiver. It is similar to the
// built-in copy; it copies as much as the overlap between the two matrices and
// returns the number of rows and columns it copied. Only elements within the
// receiver's non-zero triangle are set.
//
// See the Copier interface for more information.
func (t *TriDense) Copy(a Matrix) (r, c int) {
r, c = a.Dims()
r = min(r, t.mat.N)
c = min(c, t.mat.N)
if r == 0 || c == 0 {
return 0, 0
}
switch a := a.(type) {
case RawMatrixer:
amat := a.RawMatrix()
if t.isUpper() {
for i := 0; i < r; i++ {
copy(t.mat.Data[i*t.mat.Stride+i:i*t.mat.Stride+c], amat.Data[i*amat.Stride+i:i*amat.Stride+c])
}
} else {
for i := 0; i < r; i++ {
copy(t.mat.Data[i*t.mat.Stride:i*t.mat.Stride+i+1], amat.Data[i*amat.Stride:i*amat.Stride+i+1])
}
}
case RawTriangular:
amat := a.RawTriangular()
aIsUpper := isUpperUplo(amat.Uplo)
tIsUpper := t.isUpper()
switch {
case tIsUpper && aIsUpper:
for i := 0; i < r; i++ {
copy(t.mat.Data[i*t.mat.Stride+i:i*t.mat.Stride+c], amat.Data[i*amat.Stride+i:i*amat.Stride+c])
}
case !tIsUpper && !aIsUpper:
for i := 0; i < r; i++ {
copy(t.mat.Data[i*t.mat.Stride:i*t.mat.Stride+i+1], amat.Data[i*amat.Stride:i*amat.Stride+i+1])
}
default:
for i := 0; i < r; i++ {
t.set(i, i, amat.Data[i*amat.Stride+i])
}
}
default:
isUpper := t.isUpper()
for i := 0; i < r; i++ {
if isUpper {
for j := i; j < c; j++ {
t.set(i, j, a.At(i, j))
}
} else {
for j := 0; j <= i; j++ {
t.set(i, j, a.At(i, j))
}
}
}
}
return r, c
}
// InverseTri computes the inverse of the triangular matrix a, storing the result
// into the receiver. If a is ill-conditioned, a Condition error will be returned.
// Note that matrix inversion is numerically unstable, and should generally be
// avoided where possible, for example by using the Solve routines.
func (t *TriDense) InverseTri(a Triangular) error {
t.checkOverlapMatrix(a)
n, _ := a.Triangle()
t.reuseAsNonZeroed(a.Triangle())
t.Copy(a)
work := getFloats(3*n, false)
iwork := getInts(n, false)
cond := lapack64.Trcon(CondNorm, t.mat, work, iwork)
putFloats(work)
putInts(iwork)
if math.IsInf(cond, 1) {
return Condition(cond)
}
ok := lapack64.Trtri(t.mat)
if !ok {
return Condition(math.Inf(1))
}
if cond > ConditionTolerance {
return Condition(cond)
}
return nil
}
// MulTri takes the product of triangular matrices a and b and places the result
// in the receiver. The size of a and b must match, and they both must have the
// same TriKind, or Mul will panic.
func (t *TriDense) MulTri(a, b Triangular) {
n, kind := a.Triangle()
nb, kindb := b.Triangle()
if n != nb {
panic(ErrShape)
}
if kind != kindb {
panic(ErrTriangle)
}
aU, _ := untransposeTri(a)
bU, _ := untransposeTri(b)
t.checkOverlapMatrix(bU)
t.checkOverlapMatrix(aU)
t.reuseAsNonZeroed(n, kind)
var restore func()
if t == aU {
t, restore = t.isolatedWorkspace(aU)
defer restore()
} else if t == bU {
t, restore = t.isolatedWorkspace(bU)
defer restore()
}
// Inspect types here, helps keep the loops later clean(er).
_, aDiag := aU.(Diagonal)
_, bDiag := bU.(Diagonal)
// If they are both diagonal only need 1 loop.
// All diagonal matrices are Upper.
// TODO: Add fast paths for DiagDense.
if aDiag && bDiag {
t.Zero()
for i := 0; i < n; i++ {
t.SetTri(i, i, a.At(i, i)*b.At(i, i))
}
return
}
// Now we know at least one matrix is non-diagonal.
// And all diagonal matrices are all Upper.
// The both-diagonal case is handled above.
// TODO: Add fast paths for Dense variants.
if kind == Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
switch {
case aDiag:
t.SetTri(i, j, a.At(i, i)*b.At(i, j))
case bDiag:
t.SetTri(i, j, a.At(i, j)*b.At(j, j))
default:
var v float64
for k := i; k <= j; k++ {
v += a.At(i, k) * b.At(k, j)
}
t.SetTri(i, j, v)
}
}
}
return
}
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
var v float64
for k := j; k <= i; k++ {
v += a.At(i, k) * b.At(k, j)
}
t.SetTri(i, j, v)
}
}
}
// ScaleTri multiplies the elements of a by f, placing the result in the receiver.
// If the receiver is non-zero, the size and kind of the receiver must match
// the input, or ScaleTri will panic.
func (t *TriDense) ScaleTri(f float64, a Triangular) {
n, kind := a.Triangle()
t.reuseAsNonZeroed(n, kind)
// TODO(btracey): Improve the set of fast-paths.
switch a := a.(type) {
case RawTriangular:
amat := a.RawTriangular()
if t != a {
t.checkOverlap(generalFromTriangular(amat))
}
if kind == Upper {
for i := 0; i < n; i++ {
ts := t.mat.Data[i*t.mat.Stride+i : i*t.mat.Stride+n]
as := amat.Data[i*amat.Stride+i : i*amat.Stride+n]
for i, v := range as {
ts[i] = v * f
}
}
return
}
for i := 0; i < n; i++ {
ts := t.mat.Data[i*t.mat.Stride : i*t.mat.Stride+i+1]
as := amat.Data[i*amat.Stride : i*amat.Stride+i+1]
for i, v := range as {
ts[i] = v * f
}
}
return
default:
t.checkOverlapMatrix(a)
isUpper := kind == Upper
for i := 0; i < n; i++ {
if isUpper {
for j := i; j < n; j++ {
t.set(i, j, f*a.At(i, j))
}
} else {
for j := 0; j <= i; j++ {
t.set(i, j, f*a.At(i, j))
}
}
}
}
}
// Trace returns the trace of the matrix.
func (t *TriDense) Trace() float64 {
// TODO(btracey): could use internal asm sum routine.
var v float64
for i := 0; i < t.mat.N; i++ {
v += t.mat.Data[i*t.mat.Stride+i]
}
return v
}
// copySymIntoTriangle copies a symmetric matrix into a TriDense
func copySymIntoTriangle(t *TriDense, s Symmetric) {
n, upper := t.Triangle()
ns := s.Symmetric()
if n != ns {
panic("mat: triangle size mismatch")
}
ts := t.mat.Stride
if rs, ok := s.(RawSymmetricer); ok {
sd := rs.RawSymmetric()
ss := sd.Stride
if upper {
if sd.Uplo == blas.Upper {
for i := 0; i < n; i++ {
copy(t.mat.Data[i*ts+i:i*ts+n], sd.Data[i*ss+i:i*ss+n])
}
return
}
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
t.mat.Data[i*ts+j] = sd.Data[j*ss+i]
}
}
return
}
if sd.Uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
t.mat.Data[i*ts+j] = sd.Data[j*ss+i]
}
}
return
}
for i := 0; i < n; i++ {
copy(t.mat.Data[i*ts:i*ts+i+1], sd.Data[i*ss:i*ss+i+1])
}
return
}
if upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
t.mat.Data[i*ts+j] = s.At(i, j)
}
}
return
}
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
t.mat.Data[i*ts+j] = s.At(i, j)
}
}
}
// DoNonZero calls the function fn for each of the non-zero elements of t. The function fn
// takes a row/column index and the element value of t at (i, j).
func (t *TriDense) DoNonZero(fn func(i, j int, v float64)) {
if t.isUpper() {
for i := 0; i < t.mat.N; i++ {
for j := i; j < t.mat.N; j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
return
}
for i := 0; i < t.mat.N; i++ {
for j := 0; j <= i; j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i of t. The function fn
// takes a row/column index and the element value of t at (i, j).
func (t *TriDense) DoRowNonZero(i int, fn func(i, j int, v float64)) {
if i < 0 || t.mat.N <= i {
panic(ErrRowAccess)
}
if t.isUpper() {
for j := i; j < t.mat.N; j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
return
}
for j := 0; j <= i; j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of column j of t. The function fn
// takes a row/column index and the element value of t at (i, j).
func (t *TriDense) DoColNonZero(j int, fn func(i, j int, v float64)) {
if j < 0 || t.mat.N <= j {
panic(ErrColAccess)
}
if t.isUpper() {
for i := 0; i <= j; i++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
return
}
for i := j; i < t.mat.N; i++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}