mirror of
https://github.com/k3s-io/k3s.git
synced 2024-06-07 19:41:36 +00:00
218 lines
5.9 KiB
Go
218 lines
5.9 KiB
Go
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package mat
|
|
|
|
import (
|
|
"math"
|
|
"math/cmplx"
|
|
|
|
"gonum.org/v1/gonum/blas/cblas128"
|
|
"gonum.org/v1/gonum/floats"
|
|
)
|
|
|
|
// CMatrix is the basic matrix interface type for complex matrices.
|
|
type CMatrix interface {
|
|
// Dims returns the dimensions of a Matrix.
|
|
Dims() (r, c int)
|
|
|
|
// At returns the value of a matrix element at row i, column j.
|
|
// It will panic if i or j are out of bounds for the matrix.
|
|
At(i, j int) complex128
|
|
|
|
// H returns the conjugate transpose of the Matrix. Whether H
|
|
// returns a copy of the underlying data is implementation dependent.
|
|
// This method may be implemented using the Conjugate type, which
|
|
// provides an implicit matrix conjugate transpose.
|
|
H() CMatrix
|
|
}
|
|
|
|
// A RawCMatrixer can return a cblas128.General representation of the receiver. Changes to the cblas128.General.Data
|
|
// slice will be reflected in the original matrix, changes to the Rows, Cols and Stride fields will not.
|
|
type RawCMatrixer interface {
|
|
RawCMatrix() cblas128.General
|
|
}
|
|
|
|
var (
|
|
_ CMatrix = Conjugate{}
|
|
_ Unconjugator = Conjugate{}
|
|
)
|
|
|
|
// Conjugate is a type for performing an implicit matrix conjugate transpose.
|
|
// It implements the Matrix interface, returning values from the conjugate
|
|
// transpose of the matrix within.
|
|
type Conjugate struct {
|
|
CMatrix CMatrix
|
|
}
|
|
|
|
// At returns the value of the element at row i and column j of the conjugate
|
|
// transposed matrix, that is, row j and column i of the Matrix field.
|
|
func (t Conjugate) At(i, j int) complex128 {
|
|
z := t.CMatrix.At(j, i)
|
|
return cmplx.Conj(z)
|
|
}
|
|
|
|
// Dims returns the dimensions of the transposed matrix. The number of rows returned
|
|
// is the number of columns in the Matrix field, and the number of columns is
|
|
// the number of rows in the Matrix field.
|
|
func (t Conjugate) Dims() (r, c int) {
|
|
c, r = t.CMatrix.Dims()
|
|
return r, c
|
|
}
|
|
|
|
// H performs an implicit conjugate transpose by returning the Matrix field.
|
|
func (t Conjugate) H() CMatrix {
|
|
return t.CMatrix
|
|
}
|
|
|
|
// Unconjugate returns the Matrix field.
|
|
func (t Conjugate) Unconjugate() CMatrix {
|
|
return t.CMatrix
|
|
}
|
|
|
|
// Unconjugator is a type that can undo an implicit conjugate transpose.
|
|
type Unconjugator interface {
|
|
// Note: This interface is needed to unify all of the Conjugate types. In
|
|
// the cmat128 methods, we need to test if the Matrix has been implicitly
|
|
// transposed. If this is checked by testing for the specific Conjugate type
|
|
// then the behavior will be different if the user uses H() or HTri() for a
|
|
// triangular matrix.
|
|
|
|
// Unconjugate returns the underlying Matrix stored for the implicit
|
|
// conjugate transpose.
|
|
Unconjugate() CMatrix
|
|
}
|
|
|
|
// useC returns a complex128 slice with l elements, using c if it
|
|
// has the necessary capacity, otherwise creating a new slice.
|
|
func useC(c []complex128, l int) []complex128 {
|
|
if l <= cap(c) {
|
|
return c[:l]
|
|
}
|
|
return make([]complex128, l)
|
|
}
|
|
|
|
// useZeroedC returns a complex128 slice with l elements, using c if it
|
|
// has the necessary capacity, otherwise creating a new slice. The
|
|
// elements of the returned slice are guaranteed to be zero.
|
|
func useZeroedC(c []complex128, l int) []complex128 {
|
|
if l <= cap(c) {
|
|
c = c[:l]
|
|
zeroC(c)
|
|
return c
|
|
}
|
|
return make([]complex128, l)
|
|
}
|
|
|
|
// zeroC zeros the given slice's elements.
|
|
func zeroC(c []complex128) {
|
|
for i := range c {
|
|
c[i] = 0
|
|
}
|
|
}
|
|
|
|
// unconjugate unconjugates a matrix if applicable. If a is an Unconjugator, then
|
|
// unconjugate returns the underlying matrix and true. If it is not, then it returns
|
|
// the input matrix and false.
|
|
func unconjugate(a CMatrix) (CMatrix, bool) {
|
|
if ut, ok := a.(Unconjugator); ok {
|
|
return ut.Unconjugate(), true
|
|
}
|
|
return a, false
|
|
}
|
|
|
|
// CEqual returns whether the matrices a and b have the same size
|
|
// and are element-wise equal.
|
|
func CEqual(a, b CMatrix) bool {
|
|
ar, ac := a.Dims()
|
|
br, bc := b.Dims()
|
|
if ar != br || ac != bc {
|
|
return false
|
|
}
|
|
// TODO(btracey): Add in fast-paths.
|
|
for i := 0; i < ar; i++ {
|
|
for j := 0; j < ac; j++ {
|
|
if a.At(i, j) != b.At(i, j) {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// CEqualApprox returns whether the matrices a and b have the same size and contain all equal
|
|
// elements with tolerance for element-wise equality specified by epsilon. Matrices
|
|
// with non-equal shapes are not equal.
|
|
func CEqualApprox(a, b CMatrix, epsilon float64) bool {
|
|
// TODO(btracey):
|
|
ar, ac := a.Dims()
|
|
br, bc := b.Dims()
|
|
if ar != br || ac != bc {
|
|
return false
|
|
}
|
|
for i := 0; i < ar; i++ {
|
|
for j := 0; j < ac; j++ {
|
|
if !cEqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// TODO(btracey): Move these into a cmplxs if/when we have one.
|
|
|
|
func cEqualWithinAbsOrRel(a, b complex128, absTol, relTol float64) bool {
|
|
if cEqualWithinAbs(a, b, absTol) {
|
|
return true
|
|
}
|
|
return cEqualWithinRel(a, b, relTol)
|
|
}
|
|
|
|
// cEqualWithinAbs returns true if a and b have an absolute
|
|
// difference of less than tol.
|
|
func cEqualWithinAbs(a, b complex128, tol float64) bool {
|
|
return a == b || cmplx.Abs(a-b) <= tol
|
|
}
|
|
|
|
const minNormalFloat64 = 2.2250738585072014e-308
|
|
|
|
// cEqualWithinRel returns true if the difference between a and b
|
|
// is not greater than tol times the greater value.
|
|
func cEqualWithinRel(a, b complex128, tol float64) bool {
|
|
if a == b {
|
|
return true
|
|
}
|
|
if cmplx.IsNaN(a) || cmplx.IsNaN(b) {
|
|
return false
|
|
}
|
|
// Cannot play the same trick as in floats because there are multiple
|
|
// possible infinities.
|
|
if cmplx.IsInf(a) {
|
|
if !cmplx.IsInf(b) {
|
|
return false
|
|
}
|
|
ra := real(a)
|
|
if math.IsInf(ra, 0) {
|
|
if ra == real(b) {
|
|
return floats.EqualWithinRel(imag(a), imag(b), tol)
|
|
}
|
|
return false
|
|
}
|
|
if imag(a) == imag(b) {
|
|
return floats.EqualWithinRel(ra, real(b), tol)
|
|
}
|
|
return false
|
|
}
|
|
if cmplx.IsInf(b) {
|
|
return false
|
|
}
|
|
|
|
delta := cmplx.Abs(a - b)
|
|
if delta <= minNormalFloat64 {
|
|
return delta <= tol*minNormalFloat64
|
|
}
|
|
return delta/math.Max(cmplx.Abs(a), cmplx.Abs(b)) <= tol
|
|
}
|