mirror of
https://github.com/k3s-io/k3s.git
synced 2024-06-07 19:41:36 +00:00
674 lines
19 KiB
Go
674 lines
19 KiB
Go
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package mat
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/lapack/lapack64"
|
||
)
|
||
|
||
const (
|
||
badTriangle = "mat: invalid triangle"
|
||
badCholesky = "mat: invalid Cholesky factorization"
|
||
)
|
||
|
||
var (
|
||
_ Matrix = (*Cholesky)(nil)
|
||
_ Symmetric = (*Cholesky)(nil)
|
||
)
|
||
|
||
// Cholesky is a symmetric positive definite matrix represented by its
|
||
// Cholesky decomposition.
|
||
//
|
||
// The decomposition can be constructed using the Factorize method. The
|
||
// factorization itself can be extracted using the UTo or LTo methods, and the
|
||
// original symmetric matrix can be recovered with ToSym.
|
||
//
|
||
// Note that this matrix representation is useful for certain operations, in
|
||
// particular finding solutions to linear equations. It is very inefficient
|
||
// at other operations, in particular At is slow.
|
||
//
|
||
// Cholesky methods may only be called on a value that has been successfully
|
||
// initialized by a call to Factorize that has returned true. Calls to methods
|
||
// of an unsuccessful Cholesky factorization will panic.
|
||
type Cholesky struct {
|
||
// The chol pointer must never be retained as a pointer outside the Cholesky
|
||
// struct, either by returning chol outside the struct or by setting it to
|
||
// a pointer coming from outside. The same prohibition applies to the data
|
||
// slice within chol.
|
||
chol *TriDense
|
||
cond float64
|
||
}
|
||
|
||
// updateCond updates the condition number of the Cholesky decomposition. If
|
||
// norm > 0, then that norm is used as the norm of the original matrix A, otherwise
|
||
// the norm is estimated from the decomposition.
|
||
func (c *Cholesky) updateCond(norm float64) {
|
||
n := c.chol.mat.N
|
||
work := getFloats(3*n, false)
|
||
defer putFloats(work)
|
||
if norm < 0 {
|
||
// This is an approximation. By the definition of a norm,
|
||
// |AB| <= |A| |B|.
|
||
// Since A = U^T*U, we get for the condition number κ that
|
||
// κ(A) := |A| |A^-1| = |U^T*U| |A^-1| <= |U^T| |U| |A^-1|,
|
||
// so this will overestimate the condition number somewhat.
|
||
// The norm of the original factorized matrix cannot be stored
|
||
// because of update possibilities.
|
||
unorm := lapack64.Lantr(CondNorm, c.chol.mat, work)
|
||
lnorm := lapack64.Lantr(CondNormTrans, c.chol.mat, work)
|
||
norm = unorm * lnorm
|
||
}
|
||
sym := c.chol.asSymBlas()
|
||
iwork := getInts(n, false)
|
||
v := lapack64.Pocon(sym, norm, work, iwork)
|
||
putInts(iwork)
|
||
c.cond = 1 / v
|
||
}
|
||
|
||
// Dims returns the dimensions of the matrix.
|
||
func (ch *Cholesky) Dims() (r, c int) {
|
||
if !ch.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
r, c = ch.chol.Dims()
|
||
return r, c
|
||
}
|
||
|
||
// At returns the element at row i, column j.
|
||
func (c *Cholesky) At(i, j int) float64 {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := c.Symmetric()
|
||
if uint(i) >= uint(n) {
|
||
panic(ErrRowAccess)
|
||
}
|
||
if uint(j) >= uint(n) {
|
||
panic(ErrColAccess)
|
||
}
|
||
|
||
var val float64
|
||
for k := 0; k <= min(i, j); k++ {
|
||
val += c.chol.at(k, i) * c.chol.at(k, j)
|
||
}
|
||
return val
|
||
}
|
||
|
||
// T returns the the receiver, the transpose of a symmetric matrix.
|
||
func (c *Cholesky) T() Matrix {
|
||
return c
|
||
}
|
||
|
||
// Symmetric implements the Symmetric interface and returns the number of rows
|
||
// in the matrix (this is also the number of columns).
|
||
func (c *Cholesky) Symmetric() int {
|
||
r, _ := c.chol.Dims()
|
||
return r
|
||
}
|
||
|
||
// Cond returns the condition number of the factorized matrix.
|
||
func (c *Cholesky) Cond() float64 {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
return c.cond
|
||
}
|
||
|
||
// Factorize calculates the Cholesky decomposition of the matrix A and returns
|
||
// whether the matrix is positive definite. If Factorize returns false, the
|
||
// factorization must not be used.
|
||
func (c *Cholesky) Factorize(a Symmetric) (ok bool) {
|
||
n := a.Symmetric()
|
||
if c.chol == nil {
|
||
c.chol = NewTriDense(n, Upper, nil)
|
||
} else {
|
||
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
|
||
}
|
||
copySymIntoTriangle(c.chol, a)
|
||
|
||
sym := c.chol.asSymBlas()
|
||
work := getFloats(c.chol.mat.N, false)
|
||
norm := lapack64.Lansy(CondNorm, sym, work)
|
||
putFloats(work)
|
||
_, ok = lapack64.Potrf(sym)
|
||
if ok {
|
||
c.updateCond(norm)
|
||
} else {
|
||
c.Reset()
|
||
}
|
||
return ok
|
||
}
|
||
|
||
// Reset resets the factorization so that it can be reused as the receiver of a
|
||
// dimensionally restricted operation.
|
||
func (c *Cholesky) Reset() {
|
||
if c.chol != nil {
|
||
c.chol.Reset()
|
||
}
|
||
c.cond = math.Inf(1)
|
||
}
|
||
|
||
// SetFromU sets the Cholesky decomposition from the given triangular matrix.
|
||
// SetFromU panics if t is not upper triangular. Note that t is copied into,
|
||
// not stored inside, the receiver.
|
||
func (c *Cholesky) SetFromU(t *TriDense) {
|
||
n, kind := t.Triangle()
|
||
if kind != Upper {
|
||
panic("cholesky: matrix must be upper triangular")
|
||
}
|
||
if c.chol == nil {
|
||
c.chol = NewTriDense(n, Upper, nil)
|
||
} else {
|
||
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
|
||
}
|
||
c.chol.Copy(t)
|
||
c.updateCond(-1)
|
||
}
|
||
|
||
// Clone makes a copy of the input Cholesky into the receiver, overwriting the
|
||
// previous value of the receiver. Clone does not place any restrictions on receiver
|
||
// shape. Clone panics if the input Cholesky is not the result of a valid decomposition.
|
||
func (c *Cholesky) Clone(chol *Cholesky) {
|
||
if !chol.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := chol.Symmetric()
|
||
if c.chol == nil {
|
||
c.chol = NewTriDense(n, Upper, nil)
|
||
} else {
|
||
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
|
||
}
|
||
c.chol.Copy(chol.chol)
|
||
c.cond = chol.cond
|
||
}
|
||
|
||
// Det returns the determinant of the matrix that has been factorized.
|
||
func (c *Cholesky) Det() float64 {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
return math.Exp(c.LogDet())
|
||
}
|
||
|
||
// LogDet returns the log of the determinant of the matrix that has been factorized.
|
||
func (c *Cholesky) LogDet() float64 {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
var det float64
|
||
for i := 0; i < c.chol.mat.N; i++ {
|
||
det += 2 * math.Log(c.chol.mat.Data[i*c.chol.mat.Stride+i])
|
||
}
|
||
return det
|
||
}
|
||
|
||
// SolveTo finds the matrix X that solves A * X = B where A is represented
|
||
// by the Cholesky decomposition. The result is stored in-place into dst.
|
||
func (c *Cholesky) SolveTo(dst *Dense, b Matrix) error {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := c.chol.mat.N
|
||
bm, bn := b.Dims()
|
||
if n != bm {
|
||
panic(ErrShape)
|
||
}
|
||
|
||
dst.reuseAs(bm, bn)
|
||
if b != dst {
|
||
dst.Copy(b)
|
||
}
|
||
lapack64.Potrs(c.chol.mat, dst.mat)
|
||
if c.cond > ConditionTolerance {
|
||
return Condition(c.cond)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// SolveCholTo finds the matrix X that solves A * X = B where A and B are represented
|
||
// by their Cholesky decompositions a and b. The result is stored in-place into
|
||
// dst.
|
||
func (a *Cholesky) SolveCholTo(dst *Dense, b *Cholesky) error {
|
||
if !a.valid() || !b.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
bn := b.chol.mat.N
|
||
if a.chol.mat.N != bn {
|
||
panic(ErrShape)
|
||
}
|
||
|
||
dst.reuseAsZeroed(bn, bn)
|
||
dst.Copy(b.chol.T())
|
||
blas64.Trsm(blas.Left, blas.Trans, 1, a.chol.mat, dst.mat)
|
||
blas64.Trsm(blas.Left, blas.NoTrans, 1, a.chol.mat, dst.mat)
|
||
blas64.Trmm(blas.Right, blas.NoTrans, 1, b.chol.mat, dst.mat)
|
||
if a.cond > ConditionTolerance {
|
||
return Condition(a.cond)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// SolveVecTo finds the vector X that solves A * x = b where A is represented
|
||
// by the Cholesky decomposition. The result is stored in-place into
|
||
// dst.
|
||
func (c *Cholesky) SolveVecTo(dst *VecDense, b Vector) error {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := c.chol.mat.N
|
||
if br, bc := b.Dims(); br != n || bc != 1 {
|
||
panic(ErrShape)
|
||
}
|
||
switch rv := b.(type) {
|
||
default:
|
||
dst.reuseAs(n)
|
||
return c.SolveTo(dst.asDense(), b)
|
||
case RawVectorer:
|
||
bmat := rv.RawVector()
|
||
if dst != b {
|
||
dst.checkOverlap(bmat)
|
||
}
|
||
dst.reuseAs(n)
|
||
if dst != b {
|
||
dst.CopyVec(b)
|
||
}
|
||
lapack64.Potrs(c.chol.mat, dst.asGeneral())
|
||
if c.cond > ConditionTolerance {
|
||
return Condition(c.cond)
|
||
}
|
||
return nil
|
||
}
|
||
}
|
||
|
||
// RawU returns the Triangular matrix used to store the Cholesky decomposition of
|
||
// the original matrix A. The returned matrix should not be modified. If it is
|
||
// modified, the decomposition is invalid and should not be used.
|
||
func (c *Cholesky) RawU() Triangular {
|
||
return c.chol
|
||
}
|
||
|
||
// UTo extracts the n×n upper triangular matrix U from a Cholesky
|
||
// decomposition into dst and returns the result. If dst is nil a new
|
||
// TriDense is allocated.
|
||
// A = U^T * U.
|
||
func (c *Cholesky) UTo(dst *TriDense) *TriDense {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := c.chol.mat.N
|
||
if dst == nil {
|
||
dst = NewTriDense(n, Upper, make([]float64, n*n))
|
||
} else {
|
||
dst.reuseAs(n, Upper)
|
||
}
|
||
dst.Copy(c.chol)
|
||
return dst
|
||
}
|
||
|
||
// LTo extracts the n×n lower triangular matrix L from a Cholesky
|
||
// decomposition into dst and returns the result. If dst is nil a new
|
||
// TriDense is allocated.
|
||
// A = L * L^T.
|
||
func (c *Cholesky) LTo(dst *TriDense) *TriDense {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := c.chol.mat.N
|
||
if dst == nil {
|
||
dst = NewTriDense(n, Lower, make([]float64, n*n))
|
||
} else {
|
||
dst.reuseAs(n, Lower)
|
||
}
|
||
dst.Copy(c.chol.TTri())
|
||
return dst
|
||
}
|
||
|
||
// ToSym reconstructs the original positive definite matrix given its
|
||
// Cholesky decomposition into dst and returns the result. If dst is nil
|
||
// a new SymDense is allocated.
|
||
func (c *Cholesky) ToSym(dst *SymDense) *SymDense {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := c.chol.mat.N
|
||
if dst == nil {
|
||
dst = NewSymDense(n, nil)
|
||
} else {
|
||
dst.reuseAs(n)
|
||
}
|
||
// Create a TriDense representing the Cholesky factor U with dst's
|
||
// backing slice.
|
||
// Operations on u are reflected in s.
|
||
u := &TriDense{
|
||
mat: blas64.Triangular{
|
||
Uplo: blas.Upper,
|
||
Diag: blas.NonUnit,
|
||
N: n,
|
||
Data: dst.mat.Data,
|
||
Stride: dst.mat.Stride,
|
||
},
|
||
cap: n,
|
||
}
|
||
u.Copy(c.chol)
|
||
// Compute the product U^T*U using the algorithm from LAPACK/TESTING/LIN/dpot01.f
|
||
a := u.mat.Data
|
||
lda := u.mat.Stride
|
||
bi := blas64.Implementation()
|
||
for k := n - 1; k >= 0; k-- {
|
||
a[k*lda+k] = bi.Ddot(k+1, a[k:], lda, a[k:], lda)
|
||
if k > 0 {
|
||
bi.Dtrmv(blas.Upper, blas.Trans, blas.NonUnit, k, a, lda, a[k:], lda)
|
||
}
|
||
}
|
||
return dst
|
||
}
|
||
|
||
// InverseTo computes the inverse of the matrix represented by its Cholesky
|
||
// factorization and stores the result into s. If the factorized
|
||
// matrix is ill-conditioned, a Condition error will be returned.
|
||
// Note that matrix inversion is numerically unstable, and should generally be
|
||
// avoided where possible, for example by using the Solve routines.
|
||
func (c *Cholesky) InverseTo(s *SymDense) error {
|
||
if !c.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
s.reuseAs(c.chol.mat.N)
|
||
// Create a TriDense representing the Cholesky factor U with the backing
|
||
// slice from s.
|
||
// Operations on u are reflected in s.
|
||
u := &TriDense{
|
||
mat: blas64.Triangular{
|
||
Uplo: blas.Upper,
|
||
Diag: blas.NonUnit,
|
||
N: s.mat.N,
|
||
Data: s.mat.Data,
|
||
Stride: s.mat.Stride,
|
||
},
|
||
cap: s.mat.N,
|
||
}
|
||
u.Copy(c.chol)
|
||
|
||
_, ok := lapack64.Potri(u.mat)
|
||
if !ok {
|
||
return Condition(math.Inf(1))
|
||
}
|
||
if c.cond > ConditionTolerance {
|
||
return Condition(c.cond)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// Scale multiplies the original matrix A by a positive constant using
|
||
// its Cholesky decomposition, storing the result in-place into the receiver.
|
||
// That is, if the original Cholesky factorization is
|
||
// U^T * U = A
|
||
// the updated factorization is
|
||
// U'^T * U' = f A = A'
|
||
// Scale panics if the constant is non-positive, or if the receiver is non-zero
|
||
// and is of a different size from the input.
|
||
func (c *Cholesky) Scale(f float64, orig *Cholesky) {
|
||
if !orig.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
if f <= 0 {
|
||
panic("cholesky: scaling by a non-positive constant")
|
||
}
|
||
n := orig.Symmetric()
|
||
if c.chol == nil {
|
||
c.chol = NewTriDense(n, Upper, nil)
|
||
} else if c.chol.mat.N != n {
|
||
panic(ErrShape)
|
||
}
|
||
c.chol.ScaleTri(math.Sqrt(f), orig.chol)
|
||
c.cond = orig.cond // Scaling by a positive constant does not change the condition number.
|
||
}
|
||
|
||
// ExtendVecSym computes the Cholesky decomposition of the original matrix A,
|
||
// whose Cholesky decomposition is in a, extended by a the n×1 vector v according to
|
||
// [A w]
|
||
// [w' k]
|
||
// where k = v[n-1] and w = v[:n-1]. The result is stored into the receiver.
|
||
// In order for the updated matrix to be positive definite, it must be the case
|
||
// that k > w' A^-1 w. If this condition does not hold then ExtendVecSym will
|
||
// return false and the receiver will not be updated.
|
||
//
|
||
// ExtendVecSym will panic if v.Len() != a.Symmetric()+1 or if a does not contain
|
||
// a valid decomposition.
|
||
func (c *Cholesky) ExtendVecSym(a *Cholesky, v Vector) (ok bool) {
|
||
n := a.Symmetric()
|
||
|
||
if v.Len() != n+1 {
|
||
panic(badSliceLength)
|
||
}
|
||
if !a.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
|
||
// The algorithm is commented here, but see also
|
||
// https://math.stackexchange.com/questions/955874/cholesky-factor-when-adding-a-row-and-column-to-already-factorized-matrix
|
||
// We have A and want to compute the Cholesky of
|
||
// [A w]
|
||
// [w' k]
|
||
// We want
|
||
// [U c]
|
||
// [0 d]
|
||
// to be the updated Cholesky, and so it must be that
|
||
// [A w] = [U' 0] [U c]
|
||
// [w' k] [c' d] [0 d]
|
||
// Thus, we need
|
||
// 1) A = U'U (true by the original decomposition being valid),
|
||
// 2) U' * c = w => c = U'^-1 w
|
||
// 3) c'*c + d'*d = k => d = sqrt(k-c'*c)
|
||
|
||
// First, compute c = U'^-1 a
|
||
// TODO(btracey): Replace this with CopyVec when issue 167 is fixed.
|
||
w := NewVecDense(n, nil)
|
||
for i := 0; i < n; i++ {
|
||
w.SetVec(i, v.At(i, 0))
|
||
}
|
||
k := v.At(n, 0)
|
||
|
||
var t VecDense
|
||
t.SolveVec(a.chol.T(), w)
|
||
|
||
dot := Dot(&t, &t)
|
||
if dot >= k {
|
||
return false
|
||
}
|
||
d := math.Sqrt(k - dot)
|
||
|
||
newU := NewTriDense(n+1, Upper, nil)
|
||
newU.Copy(a.chol)
|
||
for i := 0; i < n; i++ {
|
||
newU.SetTri(i, n, t.At(i, 0))
|
||
}
|
||
newU.SetTri(n, n, d)
|
||
c.chol = newU
|
||
c.updateCond(-1)
|
||
return true
|
||
}
|
||
|
||
// SymRankOne performs a rank-1 update of the original matrix A and refactorizes
|
||
// its Cholesky factorization, storing the result into the receiver. That is, if
|
||
// in the original Cholesky factorization
|
||
// U^T * U = A,
|
||
// in the updated factorization
|
||
// U'^T * U' = A + alpha * x * x^T = A'.
|
||
//
|
||
// Note that when alpha is negative, the updating problem may be ill-conditioned
|
||
// and the results may be inaccurate, or the updated matrix A' may not be
|
||
// positive definite and not have a Cholesky factorization. SymRankOne returns
|
||
// whether the updated matrix A' is positive definite.
|
||
//
|
||
// SymRankOne updates a Cholesky factorization in O(n²) time. The Cholesky
|
||
// factorization computation from scratch is O(n³).
|
||
func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x Vector) (ok bool) {
|
||
if !orig.valid() {
|
||
panic(badCholesky)
|
||
}
|
||
n := orig.Symmetric()
|
||
if r, c := x.Dims(); r != n || c != 1 {
|
||
panic(ErrShape)
|
||
}
|
||
if orig != c {
|
||
if c.chol == nil {
|
||
c.chol = NewTriDense(n, Upper, nil)
|
||
} else if c.chol.mat.N != n {
|
||
panic(ErrShape)
|
||
}
|
||
c.chol.Copy(orig.chol)
|
||
}
|
||
|
||
if alpha == 0 {
|
||
return true
|
||
}
|
||
|
||
// Algorithms for updating and downdating the Cholesky factorization are
|
||
// described, for example, in
|
||
// - J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart: LINPACK
|
||
// Users' Guide. SIAM (1979), pages 10.10--10.14
|
||
// or
|
||
// - P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders: Methods for
|
||
// modifying matrix factorizations. Mathematics of Computation 28(126)
|
||
// (1974), Method C3 on page 521
|
||
//
|
||
// The implementation is based on LINPACK code
|
||
// http://www.netlib.org/linpack/dchud.f
|
||
// http://www.netlib.org/linpack/dchdd.f
|
||
// and
|
||
// https://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646
|
||
//
|
||
// According to http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00301.html
|
||
// LINPACK is released under BSD license.
|
||
//
|
||
// See also:
|
||
// - M. A. Saunders: Large-scale Linear Programming Using the Cholesky
|
||
// Factorization. Technical Report Stanford University (1972)
|
||
// http://i.stanford.edu/pub/cstr/reports/cs/tr/72/252/CS-TR-72-252.pdf
|
||
// - Matthias Seeger: Low rank updates for the Cholesky decomposition.
|
||
// EPFL Technical Report 161468 (2004)
|
||
// http://infoscience.epfl.ch/record/161468
|
||
|
||
work := getFloats(n, false)
|
||
defer putFloats(work)
|
||
var xmat blas64.Vector
|
||
if rv, ok := x.(RawVectorer); ok {
|
||
xmat = rv.RawVector()
|
||
} else {
|
||
var tmp *VecDense
|
||
tmp.CopyVec(x)
|
||
xmat = tmp.RawVector()
|
||
}
|
||
blas64.Copy(xmat, blas64.Vector{N: n, Data: work, Inc: 1})
|
||
|
||
if alpha > 0 {
|
||
// Compute rank-1 update.
|
||
if alpha != 1 {
|
||
blas64.Scal(math.Sqrt(alpha), blas64.Vector{N: n, Data: work, Inc: 1})
|
||
}
|
||
umat := c.chol.mat
|
||
stride := umat.Stride
|
||
for i := 0; i < n; i++ {
|
||
// Compute parameters of the Givens matrix that zeroes
|
||
// the i-th element of x.
|
||
c, s, r, _ := blas64.Rotg(umat.Data[i*stride+i], work[i])
|
||
if r < 0 {
|
||
// Multiply by -1 to have positive diagonal
|
||
// elemnts.
|
||
r *= -1
|
||
c *= -1
|
||
s *= -1
|
||
}
|
||
umat.Data[i*stride+i] = r
|
||
if i < n-1 {
|
||
// Multiply the extended factorization matrix by
|
||
// the Givens matrix from the left. Only
|
||
// the i-th row and x are modified.
|
||
blas64.Rot(
|
||
blas64.Vector{N: n - i - 1, Data: umat.Data[i*stride+i+1 : i*stride+n], Inc: 1},
|
||
blas64.Vector{N: n - i - 1, Data: work[i+1 : n], Inc: 1},
|
||
c, s)
|
||
}
|
||
}
|
||
c.updateCond(-1)
|
||
return true
|
||
}
|
||
|
||
// Compute rank-1 downdate.
|
||
alpha = math.Sqrt(-alpha)
|
||
if alpha != 1 {
|
||
blas64.Scal(alpha, blas64.Vector{N: n, Data: work, Inc: 1})
|
||
}
|
||
// Solve U^T * p = x storing the result into work.
|
||
ok = lapack64.Trtrs(blas.Trans, c.chol.RawTriangular(), blas64.General{
|
||
Rows: n,
|
||
Cols: 1,
|
||
Stride: 1,
|
||
Data: work,
|
||
})
|
||
if !ok {
|
||
// The original matrix is singular. Should not happen, because
|
||
// the factorization is valid.
|
||
panic(badCholesky)
|
||
}
|
||
norm := blas64.Nrm2(blas64.Vector{N: n, Data: work, Inc: 1})
|
||
if norm >= 1 {
|
||
// The updated matrix is not positive definite.
|
||
return false
|
||
}
|
||
norm = math.Sqrt((1 + norm) * (1 - norm))
|
||
cos := getFloats(n, false)
|
||
defer putFloats(cos)
|
||
sin := getFloats(n, false)
|
||
defer putFloats(sin)
|
||
for i := n - 1; i >= 0; i-- {
|
||
// Compute parameters of Givens matrices that zero elements of p
|
||
// backwards.
|
||
cos[i], sin[i], norm, _ = blas64.Rotg(norm, work[i])
|
||
if norm < 0 {
|
||
norm *= -1
|
||
cos[i] *= -1
|
||
sin[i] *= -1
|
||
}
|
||
}
|
||
umat := c.chol.mat
|
||
stride := umat.Stride
|
||
for i := n - 1; i >= 0; i-- {
|
||
work[i] = 0
|
||
// Apply Givens matrices to U.
|
||
// TODO(vladimir-ch): Use workspace to avoid modifying the
|
||
// receiver in case an invalid factorization is created.
|
||
blas64.Rot(
|
||
blas64.Vector{N: n - i, Data: work[i:n], Inc: 1},
|
||
blas64.Vector{N: n - i, Data: umat.Data[i*stride+i : i*stride+n], Inc: 1},
|
||
cos[i], sin[i])
|
||
if umat.Data[i*stride+i] == 0 {
|
||
// The matrix is singular (may rarely happen due to
|
||
// floating-point effects?).
|
||
ok = false
|
||
} else if umat.Data[i*stride+i] < 0 {
|
||
// Diagonal elements should be positive. If it happens
|
||
// that on the i-th row the diagonal is negative,
|
||
// multiply U from the left by an identity matrix that
|
||
// has -1 on the i-th row.
|
||
blas64.Scal(-1, blas64.Vector{N: n - i, Data: umat.Data[i*stride+i : i*stride+n], Inc: 1})
|
||
}
|
||
}
|
||
if ok {
|
||
c.updateCond(-1)
|
||
} else {
|
||
c.Reset()
|
||
}
|
||
return ok
|
||
}
|
||
|
||
func (c *Cholesky) valid() bool {
|
||
return c.chol != nil && !c.chol.IsZero()
|
||
}
|