k3s/vendor/gonum.org/v1/gonum/mat/cmatrix.go
Darren Shepherd 8031137b79 Update vendor
2019-08-30 23:08:05 -07:00

211 lines
5.6 KiB
Go

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"math/cmplx"
"gonum.org/v1/gonum/floats"
)
// CMatrix is the basic matrix interface type for complex matrices.
type CMatrix interface {
// Dims returns the dimensions of a Matrix.
Dims() (r, c int)
// At returns the value of a matrix element at row i, column j.
// It will panic if i or j are out of bounds for the matrix.
At(i, j int) complex128
// H returns the conjugate transpose of the Matrix. Whether H
// returns a copy of the underlying data is implementation dependent.
// This method may be implemented using the Conjugate type, which
// provides an implicit matrix conjugate transpose.
H() CMatrix
}
var (
_ CMatrix = Conjugate{}
_ Unconjugator = Conjugate{}
)
// Conjugate is a type for performing an implicit matrix conjugate transpose.
// It implements the Matrix interface, returning values from the conjugate
// transpose of the matrix within.
type Conjugate struct {
CMatrix CMatrix
}
// At returns the value of the element at row i and column j of the conjugate
// transposed matrix, that is, row j and column i of the Matrix field.
func (t Conjugate) At(i, j int) complex128 {
z := t.CMatrix.At(j, i)
return cmplx.Conj(z)
}
// Dims returns the dimensions of the transposed matrix. The number of rows returned
// is the number of columns in the Matrix field, and the number of columns is
// the number of rows in the Matrix field.
func (t Conjugate) Dims() (r, c int) {
c, r = t.CMatrix.Dims()
return r, c
}
// H performs an implicit conjugate transpose by returning the Matrix field.
func (t Conjugate) H() CMatrix {
return t.CMatrix
}
// Unconjugate returns the Matrix field.
func (t Conjugate) Unconjugate() CMatrix {
return t.CMatrix
}
// Unconjugator is a type that can undo an implicit conjugate transpose.
type Unconjugator interface {
// Note: This interface is needed to unify all of the Conjugate types. In
// the cmat128 methods, we need to test if the Matrix has been implicitly
// transposed. If this is checked by testing for the specific Conjugate type
// then the behavior will be different if the user uses H() or HTri() for a
// triangular matrix.
// Unconjugate returns the underlying Matrix stored for the implicit
// conjugate transpose.
Unconjugate() CMatrix
}
// useC returns a complex128 slice with l elements, using c if it
// has the necessary capacity, otherwise creating a new slice.
func useC(c []complex128, l int) []complex128 {
if l <= cap(c) {
return c[:l]
}
return make([]complex128, l)
}
// useZeroedC returns a complex128 slice with l elements, using c if it
// has the necessary capacity, otherwise creating a new slice. The
// elements of the returned slice are guaranteed to be zero.
func useZeroedC(c []complex128, l int) []complex128 {
if l <= cap(c) {
c = c[:l]
zeroC(c)
return c
}
return make([]complex128, l)
}
// zeroC zeros the given slice's elements.
func zeroC(c []complex128) {
for i := range c {
c[i] = 0
}
}
// unconjugate unconjugates a matrix if applicable. If a is an Unconjugator, then
// unconjugate returns the underlying matrix and true. If it is not, then it returns
// the input matrix and false.
func unconjugate(a CMatrix) (CMatrix, bool) {
if ut, ok := a.(Unconjugator); ok {
return ut.Unconjugate(), true
}
return a, false
}
// CEqual returns whether the matrices a and b have the same size
// and are element-wise equal.
func CEqual(a, b CMatrix) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
// TODO(btracey): Add in fast-paths.
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if a.At(i, j) != b.At(i, j) {
return false
}
}
}
return true
}
// CEqualApprox returns whether the matrices a and b have the same size and contain all equal
// elements with tolerance for element-wise equality specified by epsilon. Matrices
// with non-equal shapes are not equal.
func CEqualApprox(a, b CMatrix, epsilon float64) bool {
// TODO(btracey):
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if !cEqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) {
return false
}
}
}
return true
}
// TODO(btracey): Move these into a cmplxs if/when we have one.
func cEqualWithinAbsOrRel(a, b complex128, absTol, relTol float64) bool {
if cEqualWithinAbs(a, b, absTol) {
return true
}
return cEqualWithinRel(a, b, relTol)
}
// cEqualWithinAbs returns true if a and b have an absolute
// difference of less than tol.
func cEqualWithinAbs(a, b complex128, tol float64) bool {
return a == b || cmplx.Abs(a-b) <= tol
}
const minNormalFloat64 = 2.2250738585072014e-308
// cEqualWithinRel returns true if the difference between a and b
// is not greater than tol times the greater value.
func cEqualWithinRel(a, b complex128, tol float64) bool {
if a == b {
return true
}
if cmplx.IsNaN(a) || cmplx.IsNaN(b) {
return false
}
// Cannot play the same trick as in floats because there are multiple
// possible infinities.
if cmplx.IsInf(a) {
if !cmplx.IsInf(b) {
return false
}
ra := real(a)
if math.IsInf(ra, 0) {
if ra == real(b) {
return floats.EqualWithinRel(imag(a), imag(b), tol)
}
return false
}
if imag(a) == imag(b) {
return floats.EqualWithinRel(ra, real(b), tol)
}
return false
}
if cmplx.IsInf(b) {
return false
}
delta := cmplx.Abs(a - b)
if delta <= minNormalFloat64 {
return delta <= tol*minNormalFloat64
}
return delta/math.Max(cmplx.Abs(a), cmplx.Abs(b)) <= tol
}