stable-diffusion-webui/modules/api/api.py

272 lines
11 KiB
Python
Raw Normal View History

import base64
import io
import time
import uvicorn
2022-11-03 03:51:22 +00:00
from threading import Lock
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
from fastapi import APIRouter, Depends, FastAPI, HTTPException
import modules.shared as shared
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
2022-11-03 03:51:22 +00:00
from modules.sd_samplers import all_samplers
2022-10-29 19:09:19 +00:00
from modules.extras import run_extras, run_pnginfo
2022-11-03 03:51:22 +00:00
from modules.sd_models import checkpoints_list
from modules.realesrgan_model import get_realesrgan_models
from typing import List
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
2022-10-19 05:19:01 +00:00
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
2022-10-18 19:04:56 +00:00
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
return reqDict
def encode_pil_to_base64(image):
buffer = io.BytesIO()
image.save(buffer, format="png")
return base64.b64encode(buffer.getvalue())
class Api:
2022-11-03 03:51:22 +00:00
def __init__(self, app: FastAPI, queue_lock: Lock):
self.router = APIRouter()
2022-10-18 06:51:53 +00:00
self.app = app
self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
2022-10-29 19:09:19 +00:00
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
2022-10-29 21:04:29 +00:00
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
2022-10-30 10:08:40 +00:00
self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
2022-11-03 03:51:22 +00:00
self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
self.app.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
self.app.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
self.app.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
self.app.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
self.app.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
self.app.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
self.app.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
self.app.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
2022-10-18 19:04:56 +00:00
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
2022-10-26 14:33:45 +00:00
2022-10-18 19:04:56 +00:00
if sampler_index is None:
2022-10-26 14:33:45 +00:00
raise HTTPException(status_code=404, detail="Sampler not found")
2022-10-17 19:10:36 +00:00
populate = txt2imgreq.copy(update={ # Override __init__ params
2022-10-26 14:33:45 +00:00
"sd_model": shared.sd_model,
2022-10-18 19:04:56 +00:00
"sampler_index": sampler_index[0],
2022-10-17 20:36:14 +00:00
"do_not_save_samples": True,
"do_not_save_grid": True
2022-10-17 19:10:36 +00:00
}
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
shared.state.begin()
2022-10-18 06:51:53 +00:00
with self.queue_lock:
processed = process_images(p)
shared.state.end()
2022-10-26 14:33:45 +00:00
b64images = list(map(encode_pil_to_base64, processed.images))
2022-10-26 14:33:45 +00:00
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
sampler_index = sampler_to_index(img2imgreq.sampler_index)
2022-10-26 14:33:45 +00:00
if sampler_index is None:
2022-10-26 14:33:45 +00:00
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
2022-10-26 14:33:45 +00:00
raise HTTPException(status_code=404, detail="Init image not found")
2022-10-22 19:42:00 +00:00
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
2022-10-22 19:42:00 +00:00
2022-10-26 14:33:45 +00:00
populate = img2imgreq.copy(update={ # Override __init__ params
2022-10-26 14:33:45 +00:00
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
2022-10-26 14:33:45 +00:00
"do_not_save_grid": True,
2022-10-22 21:10:28 +00:00
"mask": mask
}
)
p = StableDiffusionProcessingImg2Img(**vars(populate))
imgs = []
for img in init_images:
img = decode_base64_to_image(img)
imgs = [img] * p.batch_size
p.init_images = imgs
shared.state.begin()
with self.queue_lock:
processed = process_images(p)
shared.state.end()
2022-10-26 14:33:45 +00:00
b64images = list(map(encode_pil_to_base64, processed.images))
if (not img2imgreq.include_init_images):
img2imgreq.init_images = None
img2imgreq.mask = None
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
reqDict = setUpscalers(req)
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
2022-10-23 19:03:30 +00:00
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
2022-10-23 16:07:59 +00:00
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
2022-10-23 16:07:59 +00:00
def prepareFiles(file):
file = decode_base64_to_file(file.data, file_path=file.name)
file.orig_name = file.name
return file
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
2022-10-23 16:07:59 +00:00
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
2022-10-23 16:07:59 +00:00
2022-10-23 19:03:30 +00:00
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
2022-10-29 19:10:00 +00:00
def pnginfoapi(self, req: PNGInfoRequest):
2022-10-29 19:09:19 +00:00
if(not req.image.strip()):
return PNGInfoResponse(info="")
result = run_pnginfo(decode_base64_to_image(req.image.strip()))
return PNGInfoResponse(info=result[1])
def progressapi(self, req: ProgressRequest = Depends()):
2022-10-26 14:33:45 +00:00
# copy from check_progress_call of ui.py
if shared.state.job_count == 0:
2022-10-29 21:04:29 +00:00
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict())
2022-10-26 14:33:45 +00:00
# avoid dividing zero
progress = 0.01
if shared.state.job_count > 0:
progress += shared.state.job_no / shared.state.job_count
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
progress = min(progress, 1)
2022-11-02 09:12:32 +00:00
shared.state.set_current_image()
current_image = None
if shared.state.current_image and not req.skip_current_image:
current_image = encode_pil_to_base64(shared.state.current_image)
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
2022-10-26 14:33:45 +00:00
2022-10-30 10:08:40 +00:00
def interruptapi(self):
shared.state.interrupt()
return {}
2022-11-03 03:51:22 +00:00
def get_config(self):
options = {}
for key in shared.opts.data.keys():
metadata = shared.opts.data_labels.get(key)
if(metadata is not None):
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
else:
options.update({key: shared.opts.data.get(key, None)})
return options
def set_config(self, req: OptionsModel):
reqDict = vars(req)
for o in reqDict:
setattr(shared.opts, o, reqDict[o])
shared.opts.save(shared.config_filename)
return
def get_cmd_flags(self):
return vars(shared.cmd_opts)
def get_samplers(self):
return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
def get_upscalers(self):
upscalers = []
for upscaler in shared.sd_upscalers:
u = upscaler.scaler
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
return upscalers
def get_sd_models(self):
return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": x.config} for x in checkpoints_list.values()]
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
def get_face_restorers(self):
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
def get_realesrgan_models(self):
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
def get_promp_styles(self):
styleList = []
for k in shared.prompt_styles.styles:
style = shared.prompt_styles.styles[k]
styleList.append({"name":style[0], "prompt": style[1], "negative_prompr": style[2]})
return styleList
def get_artists_categories(self):
return shared.artist_db.cats
def get_artists(self):
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
2022-10-30 10:08:40 +00:00
def launch(self, server_name, port):
2022-10-18 06:51:53 +00:00
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)