stable-diffusion-webui/modules/textual_inversion/preprocess.py

249 lines
10 KiB
Python
Raw Normal View History

import os
from PIL import Image, ImageOps
2022-10-20 07:53:46 +00:00
import math
import platform
import sys
import tqdm
import time
from modules import paths, shared, images, deepbooru
from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
2023-01-17 09:16:43 +00:00
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try:
if process_caption:
shared.interrogator.load()
if process_caption_deepbooru:
deepbooru.model.start()
2023-01-17 09:16:43 +00:00
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
finally:
if process_caption:
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
deepbooru.model.stop()
def listfiles(dirname):
return os.listdir(dirname)
class PreprocessParams:
src = None
dstdir = None
subindex = 0
flip = False
process_caption = False
process_caption_deepbooru = False
preprocess_txt_action = None
def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None):
caption = ""
if params.process_caption:
caption += shared.interrogator.generate_caption(image)
if params.process_caption_deepbooru:
if len(caption) > 0:
caption += ", "
caption += deepbooru.model.tag_multi(image)
filename_part = params.src
filename_part = os.path.splitext(filename_part)[0]
filename_part = os.path.basename(filename_part)
basename = f"{index:05}-{params.subindex}-{filename_part}"
image.save(os.path.join(params.dstdir, f"{basename}.png"))
if params.preprocess_txt_action == 'prepend' and existing_caption:
caption = existing_caption + ' ' + caption
elif params.preprocess_txt_action == 'append' and existing_caption:
caption = caption + ' ' + existing_caption
elif params.preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
caption = caption.strip()
if len(caption) > 0:
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
params.subindex += 1
def save_pic(image, index, params, existing_caption=None):
save_pic_with_caption(image, index, params, existing_caption=existing_caption)
if params.flip:
save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption)
def split_pic(image, inverse_xy, width, height, overlap_ratio):
if inverse_xy:
from_w, from_h = image.height, image.width
to_w, to_h = height, width
else:
from_w, from_h = image.width, image.height
to_w, to_h = width, height
h = from_h * to_w // from_w
if inverse_xy:
image = image.resize((h, to_w))
else:
image = image.resize((to_w, h))
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
y_step = (h - to_h) / (split_count - 1)
for i in range(split_count):
y = int(y_step * i)
if inverse_xy:
splitted = image.crop((y, 0, y + to_h, to_w))
else:
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
2023-01-17 09:16:43 +00:00
# not using torchvision.transforms.CenterCrop because it doesn't allow float regions
def center_crop(image: Image, w: int, h: int):
iw, ih = image.size
if ih / h < iw / w:
sw = w * ih / h
box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
else:
sh = h * iw / w
box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
return image.resize((w, h), Image.Resampling.LANCZOS, box)
2023-01-17 09:16:43 +00:00
def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
iw, ih = image.size
err = lambda w, h: 1-(lambda x: x if x < 1 else 1/x)(iw/ih/(w/h))
2023-01-19 09:39:30 +00:00
wh = max(((w, h) for w in range(mindim, maxdim+1, 64) for h in range(mindim, maxdim+1, 64)
2023-01-19 09:36:23 +00:00
if minarea <= w * h <= maxarea and err(w, h) <= threshold),
key= lambda wh: (wh[0]*wh[1], -err(*wh))[::1 if objective=='Maximize area' else -1],
default=None
)
2023-01-19 09:39:30 +00:00
return wh and center_crop(image, *wh)
2023-01-17 09:16:43 +00:00
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
2022-10-10 13:35:35 +00:00
width = process_width
height = process_height
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
split_threshold = max(0.0, min(1.0, split_threshold))
overlap_ratio = max(0.0, min(0.9, overlap_ratio))
2022-10-05 21:11:32 +00:00
assert src != dst, 'same directory specified as source and destination'
os.makedirs(dst, exist_ok=True)
files = listfiles(src)
2023-01-03 15:34:51 +00:00
shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
params = PreprocessParams()
params.dstdir = dst
params.flip = process_flip
params.process_caption = process_caption
params.process_caption_deepbooru = process_caption_deepbooru
params.preprocess_txt_action = preprocess_txt_action
2023-01-11 15:28:55 +00:00
pbar = tqdm.tqdm(files)
for index, imagefile in enumerate(pbar):
params.subindex = 0
filename = os.path.join(src, imagefile)
2022-10-11 08:32:46 +00:00
try:
2023-04-05 23:28:00 +00:00
img = Image.open(filename)
# make sure to rotate the image according to EXIF data of the original image
# ImageOps.exif_transpose(img) # doesn't work for some reason
EXIF = img._getexif()
# rotate the image according to the EXIF data
try:
if EXIF[274] == 3:
# print("Rotating image by 180 degrees")
img = img.rotate(180, expand=True)
elif EXIF[274] == 6:
# print("Rotating image by 270 degrees")
img = img.rotate(270, expand=True)
elif EXIF[274] == 8:
# print("Rotating image by 90 degrees")
img = img.rotate(90, expand=True)
except:
pass
# print("No EXIF data found for image: " + filename)
img = img.convert("RGB")
2022-10-11 08:32:46 +00:00
except Exception:
continue
2023-01-11 15:28:55 +00:00
description = f"Preprocessing [Image {index}/{len(files)}]"
pbar.set_description(description)
shared.state.textinfo = description
params.src = filename
2022-10-19 23:46:54 +00:00
existing_caption = None
existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
if os.path.exists(existing_caption_filename):
with open(existing_caption_filename, 'r', encoding="utf8") as file:
existing_caption = file.read()
2022-10-19 23:46:54 +00:00
if shared.state.interrupted:
break
2022-10-20 07:53:46 +00:00
if img.height > img.width:
ratio = (img.width * height) / (img.height * width)
inverse_xy = False
else:
ratio = (img.height * width) / (img.width * height)
inverse_xy = True
2022-10-25 22:22:29 +00:00
process_default_resize = True
2022-10-20 07:53:46 +00:00
if process_split and ratio < 1.0 and ratio <= split_threshold:
for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio):
save_pic(splitted, index, params, existing_caption=existing_caption)
2022-10-25 22:22:29 +00:00
process_default_resize = False
if process_focal_crop and img.height != img.width:
dnn_model_path = None
try:
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv"))
except Exception as e:
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
autocrop_settings = autocrop.Settings(
crop_width = width,
crop_height = height,
2022-10-25 22:22:29 +00:00
face_points_weight = process_focal_crop_face_weight,
entropy_points_weight = process_focal_crop_entropy_weight,
corner_points_weight = process_focal_crop_edges_weight,
annotate_image = process_focal_crop_debug,
dnn_model_path = dnn_model_path,
)
2022-10-25 22:22:29 +00:00
for focal in autocrop.crop_image(img, autocrop_settings):
save_pic(focal, index, params, existing_caption=existing_caption)
2022-10-25 22:22:29 +00:00
process_default_resize = False
2023-01-17 09:16:43 +00:00
if process_multicrop:
cropped = multicrop_pic(img, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
if cropped is not None:
save_pic(cropped, index, params, existing_caption=existing_caption)
else:
print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)")
process_default_resize = False
2022-10-25 22:22:29 +00:00
if process_default_resize:
2022-10-10 13:35:35 +00:00
img = images.resize_image(1, img, width, height)
save_pic(img, index, params, existing_caption=existing_caption)
shared.state.nextjob()