2024-03-20 06:17:11 +00:00
|
|
|
import dataclasses
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import k_diffusion
|
|
|
|
|
|
|
|
|
|
|
|
@dataclasses.dataclass
|
|
|
|
class Scheduler:
|
|
|
|
name: str
|
|
|
|
label: str
|
|
|
|
function: any
|
|
|
|
|
|
|
|
default_rho: float = -1
|
|
|
|
need_inner_model: bool = False
|
|
|
|
aliases: list = None
|
|
|
|
|
|
|
|
|
2024-03-20 07:27:32 +00:00
|
|
|
def uniform(n, sigma_min, sigma_max, inner_model, device):
|
|
|
|
return inner_model.get_sigmas(n)
|
|
|
|
|
|
|
|
|
2024-03-20 06:17:11 +00:00
|
|
|
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
|
|
|
|
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
|
|
|
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
|
|
|
sigs = [
|
|
|
|
inner_model.t_to_sigma(ts)
|
2024-03-20 07:29:52 +00:00
|
|
|
for ts in torch.linspace(start, end, n + 1)[:-1]
|
2024-03-20 06:17:11 +00:00
|
|
|
]
|
|
|
|
sigs += [0.0]
|
|
|
|
return torch.FloatTensor(sigs).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
schedulers = [
|
|
|
|
Scheduler('automatic', 'Automatic', None),
|
2024-03-20 07:27:32 +00:00
|
|
|
Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
|
2024-03-20 06:17:11 +00:00
|
|
|
Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
|
|
|
|
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
|
|
|
|
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
|
|
|
|
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
|
|
|
|
]
|
|
|
|
|
|
|
|
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
|