stable-diffusion-webui/modules/soft_inpainting.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

263 lines
11 KiB
Python
Raw Normal View History

class SoftInpaintingSettings:
def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation):
self.mask_blend_power = mask_blend_power
self.mask_blend_scale = mask_blend_scale
self.inpaint_detail_preservation = inpaint_detail_preservation
def add_generation_params(self, dest):
dest[enabled_gen_param_label] = True
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
# ------------------- Methods -------------------
def latent_blend(soft_inpainting, a, b, t):
"""
Interpolates two latent image representations according to the parameter t,
where the interpolated vectors' magnitudes are also interpolated separately.
The "detail_preservation" factor biases the magnitude interpolation towards
the larger of the two magnitudes.
"""
import torch
# NOTE: We use inplace operations wherever possible.
one_minus_t = 1 - t
# Linearly interpolate the image vectors.
a_scaled = a * one_minus_t
b_scaled = b * t
image_interp = a_scaled
image_interp.add_(b_scaled)
result_type = image_interp.dtype
del a_scaled, b_scaled
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
# 64-bit operations are used here to allow large exponents.
current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * one_minus_t
b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * t
desired_magnitude = a_magnitude
desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation)
del a_magnitude, b_magnitude, one_minus_t
# Change the linearly interpolated image vectors' magnitudes to the value we want.
# This is the last 64-bit operation.
image_interp_scaling_factor = desired_magnitude
image_interp_scaling_factor.div_(current_magnitude)
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
image_interp_scaled = image_interp
image_interp_scaled.mul_(image_interp_scaling_factor)
del current_magnitude
del desired_magnitude
del image_interp
del image_interp_scaling_factor
del result_type
return image_interp_scaled
def get_modified_nmask(soft_inpainting, nmask, sigma):
"""
Converts a negative mask representing the transparency of the original latent vectors being overlayed
to a mask that is scaled according to the denoising strength for this step.
Where:
0 = fully opaque, infinite density, fully masked
1 = fully transparent, zero density, fully unmasked
We bring this transparency to a power, as this allows one to simulate N number of blending operations
where N can be any positive real value. Using this one can control the balance of influence between
the denoiser and the original latents according to the sigma value.
NOTE: "mask" is not used
"""
import torch
return torch.pow(nmask, (sigma ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale)
def generate_adaptive_masks(
latent_orig,
latent_processed,
overlay_images,
masks_for_overlay,
width, height,
paste_to):
import torch
import numpy as np
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
# latent_mask = p.nmask[0].float().cpu()
# convert the original mask into a form we use to scale distances for thresholding
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
# mask_scalar = mask_scalar.numpy()
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
converted_mask = distance_map.float().cpu().numpy()
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.9, percentile_max=1, min_width=1)
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.25, percentile_max=0.75, min_width=1)
# The distance at which opacity of original decreases to 50%
# half_weighted_distance = 1 # * mask_scalar
# converted_mask = converted_mask / half_weighted_distance
converted_mask = 1 / (1 + converted_mask ** 2)
converted_mask = images.smootherstep(converted_mask)
converted_mask = 1 - converted_mask
converted_mask = 255. * converted_mask
converted_mask = converted_mask.astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc. uncrop(converted_mask,
(overlay_image.width, overlay_image.height),
paste_to)
masks_for_overlay[i] = converted_mask
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
# ------------------- Constants -------------------
default = SoftInpaintingSettings(1, 0.5, 4)
enabled_ui_label = "Soft inpainting"
enabled_gen_param_label = "Soft inpainting enabled"
enabled_el_id = "soft_inpainting_enabled"
ui_labels = SoftInpaintingSettings(
"Schedule bias",
"Preservation strength",
"Transition contrast boost")
ui_info = SoftInpaintingSettings(
"Shifts when preservation of original content occurs during denoising.",
"How strongly partially masked content should be preserved.",
"Amplifies the contrast that may be lost in partially masked regions.")
gen_param_labels = SoftInpaintingSettings(
"Soft inpainting schedule bias",
"Soft inpainting preservation strength",
"Soft inpainting transition contrast boost")
el_ids = SoftInpaintingSettings(
"mask_blend_power",
"mask_blend_scale",
"inpaint_detail_preservation")
# ------------------- UI -------------------
def gradio_ui():
import gradio as gr
from modules.ui_components import InputAccordion
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
with gr.Group():
gr.Markdown(
"""
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
**High _Mask blur_** values are recommended!
""")
result = SoftInpaintingSettings(
gr.Slider(label=ui_labels.mask_blend_power,
info=ui_info.mask_blend_power,
minimum=0,
maximum=8,
step=0.1,
value=default.mask_blend_power,
elem_id=el_ids.mask_blend_power),
gr.Slider(label=ui_labels.mask_blend_scale,
info=ui_info.mask_blend_scale,
minimum=0,
maximum=8,
step=0.05,
value=default.mask_blend_scale,
elem_id=el_ids.mask_blend_scale),
gr.Slider(label=ui_labels.inpaint_detail_preservation,
info=ui_info.inpaint_detail_preservation,
minimum=1,
maximum=32,
step=0.5,
value=default.inpaint_detail_preservation,
elem_id=el_ids.inpaint_detail_preservation))
with gr.Accordion("Help", open=False):
gr.Markdown(
f"""
### {ui_labels.mask_blend_power}
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
- **Below 1**: Stronger preservation near the end (with low sigma)
- **1**: Balanced (proportional to sigma)
- **Above 1**: Stronger preservation in the beginning (with high sigma)
""")
gr.Markdown(
f"""
### {ui_labels.mask_blend_scale}
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
- **Low values**: Favors generated content.
- **High values**: Favors original content.
""")
gr.Markdown(
f"""
### {ui_labels.inpaint_detail_preservation}
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
This can prevent the loss of contrast that occurs with linear interpolation.
- **Low values**: Softer blending, details may fade.
- **High values**: Stronger contrast, may over-saturate colors.
""")
return (
[
soft_inpainting_enabled,
result.mask_blend_power,
result.mask_blend_scale,
result.inpaint_detail_preservation
],
[
(soft_inpainting_enabled, enabled_gen_param_label),
(result.mask_blend_power, gen_param_labels.mask_blend_power),
(result.mask_blend_scale, gen_param_labels.mask_blend_scale),
(result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation)
]
)