2022-09-15 10:10:16 +00:00
import re
from collections import namedtuple
import torch
import modules . shared as shared
re_prompt = re . compile ( r '''
( . * ? )
\[
( [ ^ ] : ] + ) :
( ? : ( [ ^ ] : ] * ) : ) ?
( [ 0 - 9 ] * \. ? [ 0 - 9 ] + )
]
|
( . + )
''' , re.X)
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
# will be represented with prompt_schedule like this (assuming steps=100):
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
# [75, 'fantasy landscape with a lake and an oak in background masterful']
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
def get_learned_conditioning_prompt_schedules ( prompts , steps ) :
res = [ ]
cache = { }
for prompt in prompts :
prompt_schedule : list [ list [ str | int ] ] = [ [ steps , " " ] ]
cached = cache . get ( prompt , None )
if cached is not None :
res . append ( cached )
2022-09-15 15:05:42 +00:00
continue
2022-09-15 10:10:16 +00:00
for m in re_prompt . finditer ( prompt ) :
plaintext = m . group ( 1 ) if m . group ( 5 ) is None else m . group ( 5 )
concept_from = m . group ( 2 )
concept_to = m . group ( 3 )
if concept_to is None :
concept_to = concept_from
concept_from = " "
swap_position = float ( m . group ( 4 ) ) if m . group ( 4 ) is not None else None
if swap_position is not None :
if swap_position < 1 :
swap_position = swap_position * steps
swap_position = int ( min ( swap_position , steps ) )
swap_index = None
found_exact_index = False
for i in range ( len ( prompt_schedule ) ) :
end_step = prompt_schedule [ i ] [ 0 ]
prompt_schedule [ i ] [ 1 ] + = plaintext
if swap_position is not None and swap_index is None :
if swap_position == end_step :
swap_index = i
found_exact_index = True
if swap_position < end_step :
swap_index = i
if swap_index is not None :
if not found_exact_index :
prompt_schedule . insert ( swap_index , [ swap_position , prompt_schedule [ swap_index ] [ 1 ] ] )
for i in range ( len ( prompt_schedule ) ) :
end_step = prompt_schedule [ i ] [ 0 ]
must_replace = swap_position < end_step
prompt_schedule [ i ] [ 1 ] + = concept_to if must_replace else concept_from
res . append ( prompt_schedule )
cache [ prompt ] = prompt_schedule
#for t in prompt_schedule:
# print(t)
return res
ScheduledPromptConditioning = namedtuple ( " ScheduledPromptConditioning " , [ " end_at_step " , " cond " ] )
ScheduledPromptBatch = namedtuple ( " ScheduledPromptBatch " , [ " shape " , " schedules " ] )
def get_learned_conditioning ( prompts , steps ) :
res = [ ]
prompt_schedules = get_learned_conditioning_prompt_schedules ( prompts , steps )
cache = { }
for prompt , prompt_schedule in zip ( prompts , prompt_schedules ) :
cached = cache . get ( prompt , None )
if cached is not None :
res . append ( cached )
2022-09-15 15:05:42 +00:00
continue
2022-09-15 10:10:16 +00:00
texts = [ x [ 1 ] for x in prompt_schedule ]
conds = shared . sd_model . get_learned_conditioning ( texts )
cond_schedule = [ ]
for i , ( end_at_step , text ) in enumerate ( prompt_schedule ) :
cond_schedule . append ( ScheduledPromptConditioning ( end_at_step , conds [ i ] ) )
cache [ prompt ] = cond_schedule
res . append ( cond_schedule )
return ScheduledPromptBatch ( ( len ( prompts ) , ) + res [ 0 ] [ 0 ] . cond . shape , res )
def reconstruct_cond_batch ( c : ScheduledPromptBatch , current_step ) :
2022-09-19 15:39:21 +00:00
res = torch . zeros ( c . shape , device = shared . device , dtype = next ( shared . sd_model . parameters ( ) ) . dtype )
2022-09-15 10:10:16 +00:00
for i , cond_schedule in enumerate ( c . schedules ) :
target_index = 0
for curret_index , ( end_at , cond ) in enumerate ( cond_schedule ) :
if current_step < = end_at :
target_index = curret_index
break
res [ i ] = cond_schedule [ target_index ] . cond
2022-09-19 15:18:33 +00:00
return res
2022-09-15 10:10:16 +00:00
2022-09-29 08:31:48 +00:00
re_attention = re . compile ( r """
\\\( |
\\\) |
\\\[ |
\\] |
\\\\|
\\|
\( |
\[ |
: ( [ + - ] ? [ . \d ] + ) \) |
\) |
] |
[ ^ \\( ) \[ \] : ] + |
:
""" , re.X)
def parse_prompt_attention ( text ) :
"""
Parses a string with attention tokens and returns a list of pairs : text and its assoicated weight .
Accepted tokens are :
( abc ) - increases attention to abc by a multiplier of 1.1
( abc : 3.12 ) - increases attention to abc by a multiplier of 3.12
[ abc ] - decreases attention to abc by a multiplier of 1.1
\( - literal character ' ( '
\[ - literal character ' [ '
\) - literal character ' ) '
\] - literal character ' ] '
\\ - literal character ' \'
anything else - just text
Example :
' a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))). '
produces :
[
[ ' a ' , 1.0 ] ,
[ ' house ' , 1.5730000000000004 ] ,
[ ' ' , 1.1 ] ,
[ ' on ' , 1.0 ] ,
[ ' a ' , 1.1 ] ,
[ ' hill ' , 0.55 ] ,
[ ' , sun, ' , 1.1 ] ,
[ ' sky ' , 1.4641000000000006 ] ,
[ ' . ' , 1.1 ]
]
"""
2022-09-15 10:10:16 +00:00
2022-09-29 08:31:48 +00:00
res = [ ]
round_brackets = [ ]
square_brackets = [ ]
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range ( start_position , multiplier ) :
for p in range ( start_position , len ( res ) ) :
res [ p ] [ 1 ] * = multiplier
for m in re_attention . finditer ( text ) :
text = m . group ( 0 )
weight = m . group ( 1 )
if text . startswith ( ' \\ ' ) :
res . append ( [ text [ 1 : ] , 1.0 ] )
elif text == ' ( ' :
round_brackets . append ( len ( res ) )
elif text == ' [ ' :
square_brackets . append ( len ( res ) )
elif weight is not None and len ( round_brackets ) > 0 :
multiply_range ( round_brackets . pop ( ) , float ( weight ) )
elif text == ' ) ' and len ( round_brackets ) > 0 :
multiply_range ( round_brackets . pop ( ) , round_bracket_multiplier )
elif text == ' ] ' and len ( square_brackets ) > 0 :
multiply_range ( square_brackets . pop ( ) , square_bracket_multiplier )
else :
res . append ( [ text , 1.0 ] )
for pos in round_brackets :
multiply_range ( pos , round_bracket_multiplier )
for pos in square_brackets :
multiply_range ( pos , square_bracket_multiplier )
2022-09-29 08:39:55 +00:00
if len ( res ) == 0 :
res = [ [ " " , 1.0 ] ]
2022-09-29 08:31:48 +00:00
return res